कोड / Code : **12**

विषय / Subject : CIVIL ENGINEERING

पुस्तिका में पृष्ठों की संख्या / Number of Pages in Booklet: 16

पुस्तिका में प्रश्नों की संख्या / Number of Questions in Booklet: 100 CIVII. ENGINEERING

समय / Time : 2.00 घंटे / Hours

INSTRUCTIONS

- 1. Answer all questions.
- All questions carry equal marks.
- 3. Only one answer is to be given for each question.
- 4. If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- 7. The candidate should ensure that Series Code of the Question Paper Booklet and Answer Sheet must be same after opening the envelopes. In case they are different, a candidate must obtain another question paper of the same series. Candidate himself shall be responsible for ensuring this.
- 8. Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable material with him/her will be strictly dealt as per rules.
- 9. Please cirrectly fill your Roll Number in O.M.R. Sheet, 5 marks will be deducted for filling wrong or incomplete Roll Number.
- 10. If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorised material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted under Section 3 of the R.P.E. (Prevention of Unfairmeans) Act, 1992. Commission may also debar him/her permanently from all future examinations of the Commission.

12 / Civil Englneering

पूर्णांक / Maximum Marks : 200

निर्देश

- सभी प्रश्नों के उत्तर दीजिए ।
- सभी प्रश्नों के अंक समान हैं।
- प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।
- एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा ।
- प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया हैं। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बबल को उत्तर-पत्रक पर नीले बॉल चाइंट पेन से गहरा करना है ।
- प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है । किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।
- प्रश्न-पत्र पुस्तिका एवं उत्तर पत्रक के लिफाफे की सील खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुस्तिका पर वही सीरीज अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई भिन्नता हो तो वीक्षक से प्रश्न-पत्र की ही सीरीज वाला दूसरा प्रश्न-पत्र का लिफाफा प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।
- मोबाईल फोन अथवा इलेक्ट्रोनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित हैं। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानी पूर्वक सही भरें । गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांको में से अनिवार्य रूप से काटे जाएंगे।
- 10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की त्रुटि हो तो प्रश्न के हिन्दी तथा अंग्रेजी रूपान्तरों में से अंग्रेजी रूपान्तर मान्य होगा।

चेतावनी : अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराई जायेगी और आर. पी. ई. (अनुचित साधनों की रोकथाम) अधिनियम, 1992 के नियम 3 के तहत कार्यवाही की जायेगी। साथ ही आयोग ऐसे अभ्यर्थी को भविष्य में होने वाली आयोग की समस्त परीक्षाओं से विवर्जित कर सकता है।

	1	For v	walls having thickness of w	all mo	ore than one and a half brick, the	
	-	follov	wing bond is more compac	t and	stronger:	
		(1)	Double Flemish Bond	·(2)	English Bond	
		(3)	Garden Wall Bond	(4)	Dutch Bond	
					and the second second	•
	2	In a	wooden door, "Style" is the			
		(1)	outside vertical member o			
		(2)	topmost horizontal membe			
·		(3)	middle horizontal member		ne shutter	
		(4)	horizontal projection of h	ead		
	3	From	practical considerations a	nd ef	fective working of the ventilation	
		syste	m, the desired value of ra	te of	air changes per hour is:	
		(1)	one	(2)	five	
•		(3)	twenty	(4)	thirty	
	4	•	k lime is:	(0)	Calaina prido	
		(1)	Calcium carbonate	(2)	Calcium oxide Calcium chloride	
		(3)	Calcium hydroxide	(4)	Calcium emonde	
	5			nes in	n stone masonry construction	
			ld be	1 1		
		(1)	along the direction of be			
		(2)	at 30° to the direction of			
		(3)	at 45° to the direction of			
		(4)	perpendicular to the direc	Mon	or bedding planes	
	6.	Efflo	prescence in the bricks is	caused	d due to	
		(1)	Lime	(2)	Organic matter	
		\ _ /		(4)	Alkalies	
		(3)	Iron	(-)	• •	
		(3)		(1)		
	7	(3) Dry	Rot and Wet Rot are the		Disappen of timber	
	7	(3) Dry (1)	Rot and Wet Rot are the Defects of timber	(2)	Diseases of timber	
	7	(3) Dry	Rot and Wet Rot are the		Diseases of timber Structure of timber	
	7	(3) Dry (1) (3) Whi	Rot and Wet Rot are the Defects of timber Characteristics of timber ch one of the following is	(2) (4)		t
		(3) Dry (1) (3) Whi of I	Rot and Wet Rot are the Defects of timber Characteristics of timber ch one of the following is nydration?	(2) (4) respo	Structure of timber onsible for initial set and high hear	t
		(3) Dry (1) (3) Whi of 1 (1)	Rot and Wet Rot are the Defects of timber Characteristics of timber ch one of the following is nydration? Tri-calcium silicate	(2) (4) respo	Structure of timber onsible for initial set and high hear Di-calcium silicate	t
		(3) Dry (1) (3) Whi of I	Rot and Wet Rot are the Defects of timber Characteristics of timber ch one of the following is nydration?	(2) (4) respo	Structure of timber onsible for initial set and high hear	

,	inne	er curve of a	nce between the arch is known	ne spri wn as	nging line and highest point of the :
	(1)	spandrel		(2)	rise
	(3)	intrados		(4)	extrados
10	Ring	g and Ball ap	paratus is use	ed for	the following test of bitumen:
	(1)	Penetration		(2)	Viscosity
	(3)	Ductility		(4)	Softening point
11	Erro	or due to bad	ranging is:		
	(1)	Cumulative	positive	(2)	Cumulative negative
	(3)	Compensativ	/e ·	(4)	Never serious
12	Imaş eartl	ginary line joi h is known a	ning the point	s of z	ero declination on the surface of
	(1)	Isogonic line	e	(2)	Isoclinic line
	(3)	Magnetic de	eclination line	(4)	Agonic lines
13	The of g (1) (3)	curved surfac ravity at that A level plar A horizontal	point is knov ne	wn as (2)	nt is perpendicular to the direction A level surface A vertical surface
14	(1) (2) (3)	Adjustment Adjustment Adjustment	for the perm of horizontal of vertical axi of plate levels of line of sigl	axis is	adjustment of a theodolite for :
15 .	readi	tripod settles ing and the fo	in the interval llowing foresig	that el tht read	apses between taking a back sight ding, then the elevation of turning
	(1)	increase	•	(2)	decrease
	(3)	not change		(4)	may increase or decrease
16	Axis (1) (2) (3) (4)	The lengths The angle at The percenta		very ery ac ngles	acçurately
12_A	•			3	[Contd
					I HOMERANDO HOLISON & - 1

12	. •	4	[Contd
•	=		<u> •</u>
	(1) $q = (k/h) (N_f/N_d)$	(2)	$q = (k/h) (N_d/N_f)$
24	flow net as	/	
	(3) semi-solid state	(4)	solid state
	(1) liquid state	(2)	
23	and plastic limit, the soil n	nass is s	aid to be in :
	(3) 560, 530	(1)	-30, -60
			D_{60}/D_{10}
22		=	
	•		
	(3) 1.57 g/cm^3	(4)	2.105 g/cm ³
	(1) 1.755 g/cm^3	(2)	0.755 g/cm^3
21			
	(3) Trapezoidal rule	(4)	Simpson's one third rule
	. ` '		•
20	areas is :		
	(3) Vertical cliff	(4)	Valley
	(1) Plane ground	(2)	Cave
19	Contour lines of different el	levation o	can unite to form one line only in
	(3) Common curve	(4)	Transition curve
			Base curve
18	compound curve is known	as :	
	(3) 100.055 III	(1)	101,070 III
		` '	101.870 m
-	foresight is 1.870 m, the R		e forward station is 101.215 m
	20 21 22 23	 (1) 99.345 m (3) 100.655 m 18 A curve of varying radius compound curve is known (1) Mean curve (3) Common curve 19 Contour lines of different elethe case of: (1) Plane ground (3) Vertical cliff 20 The method which gives mareas is: (1) Average ordinate rule (3) Trapezoidal rule 21 The porosity of a soil same particles is 2.7. The dry document of the coefficient of uniformit (1) 1.755 g/cm³ (3) 1.57 g/cm³ 22 The coefficient of uniformit (1) D₁₀/D₆₀ (3) D₆₀/D₃₀ 23 If the natural water content and plastic limit, the soil rule in the soil rule (1) liquid state (3) semi-solid state 24 Discharge through the body flow net as (1) q = (k/h) (N_f/N_d) (3) q = (k·h) (N_f/N_d) (4) where, k is coefficient of permitted in the composition of permitted in the compo	(1) 99.345 m (2) (3) 100.655 m (4) 18 A curve of varying radius introducompound curve is known as: (1) Mean curve (2) (3) Common curve (4) 19 Contour lines of different elevation of the case of: (1) Plane ground (2) (3) Vertical cliff (4) 20 The method which gives more accurareas is: (1) Average ordinate rule (2) (3) Trapezoidal rule (4) 21 The porosity of a soil sample is 3: particles is 2.7. The dry density of (1) 1.755 g/cm ³ (2) (3) 1.57 g/cm ³ (4) 22 The coefficient of uniformity of a (1) D ₁₀ /D ₆₀ (2) (3) D ₆₀ /D ₃₀ (4) 23 If the natural water content of soil and plastic limit, the soil mass is so (1) liquid state (2) (3) semi-solid state (4) 24 Discharge through the body of an endow net as (1) q = (k/h) (N _f /N _d) (2) (3) q = (k h) (N _f /N _d) (4) where, k is coefficient of permeabilit fields and N _d is number of potentia

,5	The critical gradient of a soil ratio as 0.67 is	I having specific gravity as 2.67 and voids
	(1) 2.0	(2) 1.0
	(3) 4.0	(4) 2.5

- - (1)The greater the viscosity, the greater is permeability.
 - (2) The greater the unit weight, the greater is permeability
 - The greater the unit weight, the smaller is permeability. (3)
 - (4) Unit weight does not affect permeability.
- 27 The phenomenon when soil loses its shear strength due to oscillatory motion is known as:
 - \cdot (1) Consolidation^{*}
- Shear failure
- (3) Liquefaction
- (4)Sloughing
- 28 Degree of consolidation is :
 - directly proportional to time and inversely proportional to drainage
 - (2) directly proportional to time and inversely proportional to square of drainage path
 - directly proportional to drainage path and inversely proportional to (3) time
 - (4) directly proportional to square of drainage path and inversely proportional to time
- 29 The shear strength of a soil:
 - is directly proportional to the angle of internal friction of the soil
 - is inversely proportional to the angle of internal friction of the soil
 - (3) decreases with increase in normal stress
 - (4) decreases with decrease in normal stress
- A vertical retaining wall retains a C-\$\phi\$ (phi) backfill with a surcharge 30 of uniform intensity q per unit area. The depth Z_{O} where the active earth pressure is zero, is given by

(1)
$$q/\gamma$$
 (2) $\frac{2C'}{\gamma} \tan \alpha' - q/\gamma$

(3)
$$\frac{2C'}{\gamma} \tan \alpha' + q/\gamma$$
 (4) $\frac{2C'}{\gamma} \tan \alpha'$

	31	The ratios of pressure at depths 0.5 m and 2 is:	between the p m below a con	oints X and Y nstant level of v	located res	pecta 2. container
		(1) 1:2	(2)	1 : $\sqrt{2}$		
	-	(3) 1:16	(4)	1 ; 4		
	32	A vertical rectangular top and bottom surfa free surface. The pos will be at a distance	ition of center	and 6.0 m res	pectively b	elow the
		(1) 3.75 m	(2)	4.0 m		
		(3) 4.2 m	(4)	4.5 m	•	•
	33	A stone weighs 450 stone is: (1) 0.0204 m ³	•	50 N in water.	The volun	ne of the
		•	(4)	•		• .
		(3) 1.0204 m ³	(1)	1,0402 111		
·	34	The metacentric heig	ht of a floating	g body :		
		(1) Is the distance			centre of b	uoyancy
		(2) Is the same ab				
		(3) Is the distance				of gravity
		(4) Is the height o				
		(1) 14 1111 1111 1111				
	35	A stream function is the components of v	defined by the e	expression $\varphi = \frac{1}{2}$ t P (X = 3, Y	$2X^2 - Y^3.$ $= 1).$	Calculate
		(1) -3 , -12	(2)			
		(3) +3, +1	• •	+ 12, -1	.•	
				•		
•	36	The hydraulic gradie			n of:	
		(1) Datum head in				
	1	(2) Velocity head i				
		(3) Piezometric hea	id in the direct	tion of flow		
		(4) Total energy in	the direction	of flow		
· .	37	If H is the head, th	e discharge thr	ough a V-notch	varies as	. .
٠	3,	(1) $H^{1/2}$	(2)	$H^{3/2}$, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
	•	(3) $H^{5/2}$	(4)	£ 10	•	
	12_		6	11	I INDERESTRI DESI	[Contd
	14_	', #1	U		E ILLERAS EL DITO 1101 (83)	Loman

?&& 188	In laminar flow, the shear stress distribution for a fluid flowing in between the parallel plates, both at rest, is:
	(1) constant over the cross section
	(2) parabolic distribution across the section
	(3) zero at the mid plane and varies linearly with distance from
	mid plane
	(4) zero at plates and increases linearly to midpoint
39	With the same cross-sectional area and immersed in same turbulent flow, the largest total drag will be on :
	(1) a circular disc of plate held normal to flow
	(2) a sphere
	(3) a cylinder
	(4) a streamlined body
40	Lysimeter is used for the determination of :
-	(1) Transpiration (2) Evapo-transpiration
	(3) Infiltration (4) Pan Coefficient
41	In the derivation of unit hydrograph the flood hydrograph used should have the duration of rainfall as:
	(1) 10% of basin lag (2) 20% to 30% of basin lag
	(3) 50% of basin lag (4) 60% of basin lag
42	The rainfall on five successive days were measured as 100 mm, 80 mm, 60 mm, 40 mm and 20 mm respectively. If the infiltration index or the storm loss rate for the catchment area is earlier estimated as 50 mm/day, the total surface run off will be:
	(1) 50 mm (2) 60 mm
	(3) 90 mm (4) 140 mm
43	The scour depth as per Lacey's theory is given as follows (where q is the discharge intensity and f is the silt factor): (1) $R = 1.35 (q^2/f)^{1/3}$ (2) $R = 1.35 (q/f^2)^{1/3}$
	(3) $R = 1.35 (f/q^2)^{1/3}$ (4) $R = 1.35 (f^2/q)^{1/3}$
44	For a flood control reservoir, the effective storage is equal to:
	(1) useful storage - valley storage
	(2) useful storage + surcharge storage
	(3) useful storage + surcharge storage + valley storage
	(4) useful storage + surcharge storage - valley storage
12_A	
_	

45 The silt factor in Lacey's theory is given as :

(1)
$$f = 4.75 \sqrt{m_r}$$

(2)
$$f = 7.45 \sqrt{m_r}$$

(3)
$$f = 1.76 \sqrt{m_r}$$

(4)
$$f = 1.56 \sqrt{m_r}$$

where, m_{r} is the average particle size in mm.

46 Modulus of rigidity is defined as the ratio of :

- (1) longitudinal stress to longitudinal strain
- (2) shear stress to shear strain
- (3) stress to strain
- (4) stress to volumetric strain

47 If M is bending moment, I is moment of inertia, R is radius of curvature, E is modulus of elasticity, σ is bending stress, y is the distance from neutral axis, the flexure formula is:

$$(1) \quad \frac{M}{I} = \frac{y}{\sigma} = \frac{E}{R}$$

(2)
$$\frac{M}{I} = \frac{\sigma}{y} = \frac{R}{E}$$

$$(3) \quad \frac{I}{M} = \frac{\sigma}{y} = \frac{R}{E}$$

$$(4) \quad \frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$$

48 Purlins are supported on the :

- (1) Principal rafter
- (2) Common rafter
- (3) Bottom chord
- (4) Base plate

49 Effective length of a weld is equal to:

- (1) overall length weld size
- (2) overall length throat thickness overall
- (3) overall length $-2 \times \text{weld size}$
- (4) length 2 × throat thickness

50 In a grillage footing the beams in each tier are spaced such that the minimum spacing between the flanges of the two consecutive beams is not less than:

(1) 50 mm

(2) 75 mm

(3) 100 mm

(4) 150 mm

. 51	For a bridge having span m bridge is:	ore than	1 150 m, the recommended type of
	(1) Riveted Plate Girder 1	Bridge	
	(2) Welded Plate Girder I	_	•
	(3) Suspension Bridge	Ü	
	(4) Truss Girder Bridge	•	
52		a shear	is 100 mm wide and 200 mm deep. force of 20 kN, then the maximum
	(1) 1 N/mm^2	(2)	1.125 N/mm ²
	$(3) 1.33 \text{ N/mm}^2$	(4)	1.5 N/mm ²
53	The relation between modulu ratio 1/m is:	is of elas	sticity E, bulk modulus K, Poisson's
٠.	(1) $E = 3K (1 - 2/m)$	(2)	E = 2K (1 - 3/m)
	(3) $K = 3E (1 - 2/m)$	(4)	K = 2E (1 - 3/m)
54			orted beam, over which uniformly g moment diagram will consist of:
	(1) Inclined lines	(2)	Third degree polynomials
	(3) Fourth degree polynom	nials (4)	Parabolic lines
		٠	
55			of width b and depth d, about an of gravity and parallel to the ends,
	(1) $I_{xx} = 1/12 \text{ db}^3$	(2)	$I_{xx} = 1/12 \text{ bd}^3$
	(3) $I_{xx} = 1/64 \text{ bd}^3$		$I_{xx} = 1/32 \text{ db}^3$
	· · · · · · · · · · · · · · · · · · ·		
56	The carry over factor in a pr	ismatic i	member whose far end is fixed is:
-	(1) 0	(2)	1/2
	(3) 3/4	(4)	1
		()	•
57	The heaviest I-section for sa	ıme depi	th is:
	(1) ISMB	(2)	ISLB
	(3) ISHB	(4)	ISWB
12_A	, ,	9	[Contd
_	· · · · · · · · · · · · · · · · · · ·		1:0000/10059/100/000
	•		

		·						
58		maximum deflection of n as equal to :	a fixed b	eam with	central	point	load	W: is
	(1)	$\frac{WL^4}{192EI}$.(2)	$\frac{WL^3}{192EI}$				
	(3)	$\frac{WL^3}{384FI}$	(4)	$\frac{WL^4}{384EI}$:		13

59	The number of equations required to obtain axial force in the members	ers
	of a statically determinate plane frame is:	

(2)(1) (4) (3)

384*EI*

- For a standard 45° fillet, the ratio of size of fillet to throat thickness 60 is :
 - (2) 1: 1.414 1:1 (1)2:1 (4) (3)1.414:1

A cantilever beam of rectangular cross-section is subjected to a concentrated 61 load W at its free end. If the width of the beam is doubled, the deflection at the free end as compared to the earlier case will be:

8 times (2)(1) 16 times Half (4)(3)2 times

Bearing stiffener in a plate girder is used to : 62

- transfer the load from the top flange to the bottom one
- prevent buckling of web (2)
- decrease the effective depth of web (3)
- prevent excessive deflection (4)

In a fixed beam carrying a uniformly distributed load W over the whole 63 span, two points of contraflexure occur. They are equidistant from the centre of the span and this distance is :

[Contd...

$$(1) \quad \frac{L}{3} \qquad \qquad (2) \quad \frac{L}{\sqrt{3}}$$

$$(3) \quad \frac{L}{2\sqrt{3}} \qquad \qquad (4) \quad \frac{2L}{\sqrt{3}}$$

64		a static	cally determ	inate plane	e fram	ne the relationship bety	ween member
						n = 2j - 3	
			3n - 2			n = 2j = 3 $n = 3j - 2$	
	•	-				mber of joints.	
		,, o	· · · · ·	n bars, j	- nun	moer or joints.	• .
65	The in t	stress	developed ature, is gi	in a bar w ven as :	hich is	s not free to expand du	ue to increase
	(1)	p = 0	ouE		(2)	$p = \frac{\alpha}{tE}$	
	(3)	<i>p</i> =	$\frac{t}{\alpha E}$		(4)	$p = \frac{E}{\alpha t}$	
••		eased.	is the coef	ficient of	therm	al expansion and $t =$	temperature
66	For	-most (of the appli	cations, w	ater to	o cement ratio should	be between:
·			and 0.5			0.5 and 0.55	
	(3)	0.55	and 0.60		(4)	0.60 and 0.65	
67	part mea (1)	icles h n dim One-	aving least ension	dimensio	n (thio	ate is the percentage lockness) less than Two-fifth Four- fifth	of their
68	The	finene	ess modulus	of fine a	aggred	gates should be betwe	en .
		2 to	_	, o, 11110 (
		4 to				5 to 6	
	` /				()		
69						paratus the increase in more than	the distance
	(1)	1 to	2 mm		(2)	3 to 5 mm	
	(3)	5 to	10 mm		(4)	10 to 15 mm	
70			fails in borly by :	nd, then it	ts bon	d strength can be inc	reased most
	(1)	increa	ising the d	epth of be	eam		
	(2)	using	thinner ba	rs but mo	ore in	number	
	(3)	using	thicker ba	rs but les	s in 1	number	
	(4)	provi	ding vertica	ıl stirrups			
12_A]				11	118881871	[Contd

		with normal weight aggregates of 20 mm nominal maximum size is: (1) 220 kg/m ³ (2) 240 kg/m ³
		(3) 280 kg/m^3 (4) 300 kg/m^3
		(b) 200 mg.m.
	72	For lightly reinforced sections in slabs, beams, columns etc. the slump
		should be:
		(1) 15-25 mm (2) 25-75 mm
		(3) 50-100 mm (4) 75-100 mm
	73	The minimum diameter of longitudinal bars in a column is
		(1) 6 mm (2) 8 mm
-		(3) 12 mm (4) 16 mm
-	74	In a critical section of a beam:
		(1) The full strength of steel in tension is not being utilised
		(2) The full strength of concrete in compression is not being utilised
		(3) The stresses developed in steel and concrete will simultaneously be the same as assumed in design
		(4) The concrete will reach its maximum allowable stress earlier than steel
	75	In a reinforced concrete beam the distribution of shear stress is :
•	, ,	(1) Parabolic over and below the neutral axis
		(2) Parabolic over neutral axis and rectangular below neutral axis
		(3) Rectangular over neutral axis and parabolic below neutral axis
		(4) Rectangular over and below neutral axis
	76	The minimum spacing of stirrups is:
		(1) 6 cm (2) 10 cm
		(3) 12 cm (4) 15 cm
	77	It is usual not to provide thickness of floor slabs in buildings less than:
	•	(1) 7.5 cm (2) 10 cm
		(3) 12.5 cm (4) 15 cm
		_A] 12 [Contd

78	A	doubly reinforced beam is used when :
	(1)	
	(2)	•
•	(3)	
;	(4)	Depth and breadth of the beam have to be restricted for reason
		of appearance etc.
79		e neutral axis of a T-beam :
	(1)	Always passes through the flange area
	(2)	Always passes through the rib area
	(3)	y and the manage
	(4)	Can exist anywhere in the section of beam
80	In 4	the heat with a Country of the second
00	prov	the heel slab of a cantilever retaining wall, main reinforcement is vided at :
	(1)	Top of slab (2) Bottom of slab
		Centre of slab (4) Sides of slab
	(-)	(1) Black of slab
81	For	one storeyed buildings in town the minimum residual pressure at
	ferrı	ale point for direct supply should be:
	(1)	3 m (2) 5 m
	(3)	7 m (4) 10 m
82		distribution mains are designed for :
	(1)	maximum daily demand
	(2)	maximum hourly demand
	(3)	average daily demand
	(4)	maximum hourly demand on maximum day
83	For	growing towns and cities having vast scope for expansion, the method
	of fo	orecasting population, mostly applicable, is:
	(1)	Incremental increase method
·	(2)	Geometrical increase method
	(3)	Graphical method
	(4)	Logistic method
.84	The	standard rate of filtration through a muid and filtration at
.04	(1)	standard rate of filtration through a rapid sand filter is usually: 50-60 litre per minute per m ²
. 1	(2)	80-100 litre per minute per m ²
. ,	(3)	120-150 litre per minute per m ²
	(4)	150-180 litre per minute per m ²
12 A		and the second s
~ ~_ ^	-1	13 Contd
	•	

	85	The effective size of sand particles used in slow sand filters is:				
		(1) 0.25 to 0.35 mm (2) 0.35 to 0.60 mm				
		(3) 0.60 to 1.00 mm (4) 1.00 to 1.80 mm				
•						
	86	The detention period usually adopted in grit chambers is:				
		(1) 30 seconds (2) 60 seconds				
	•	(3) 60 minutes (4) 120 minutes				
	87					
		systems is :				
		(1) 4 - 5 hours (2) 4 - 6 hours				
		(3) 8 - 10 hours (4) 12 - 24 hours				
	88	The hydraulic loading rate of a high rate trickling filter, including				
		recirculation, in $m^3/m^2/day$ is : (1) 1-4 (2) 10-40				
		(1) 100 000				
		(3) 40-100 (4) 100-200				
	00	The course delly per cenite contribution of ROD, is				
	89	The average daily per capita contribution of BOD ₅ is: (1) 15 grams (2) 30 grams				
		(1)				
		(3) 45 grams (4) 60 grams				
	00	Laying of sewers is usually done with the help of:				
	90					
		(4) a plane table				
	91	For a pavement design the recommended safe lateral coefficient of				
	71	friction is:				
		(1) 1.5 (2) 0.15				
		(3) 15 (4) 1/15				
	92	Stopping Sight Distance is always:				
		(1) less than overtaking sight distance				
		(2) equal to overtaking sight distance				
		(3) more than overtaking sight distance				
	•	(4) equal to lag distance				
	12_					
	- -					

	(3) 60 degree	(4)	90 degree		
	·./				
	(1) 30 degree	(2)	45 degree		
100	The best angle in angle pa the convenience of driver,	rking, com is :	nsidering the road obstruction and		
	(3) Accident studies	(4)	Origin and Destination studies		
	(1) Traffic volume studies		Speed studies		
99	Desire Lines are plotted in :				
	(3) Tack coat	(4)	Wear coat		
	(1) Prime coat	(2)	Seal coat		
98	is known as :		idy existing impervious pavement,		
	(4) Flexible overlay on r	igid pave	ment		
	(3) Rigid overlay on flex				
	(2) Flexible overlay on flexible pavement				
	(1) Rigid overlay on rigi				
97	Bankelman beam deflection method is used for design of:				
			than 98 th percentile speed		
			d of a vehicle at a specified section		
			be more than traffic volume		
,,,	· 1		be more than traffic capacity		
96	Select the correct statemen	nf ·			
	(3) Stopping distance	(4)	Sight distance		
	(1) Braking distance	(2)	Lag distance		
95	The distance travelled by known as:	the vehic	le during the total reaction time is		
		(4)	** /U		
	(3) 10 %	(2) (4)			
7	(1) 8 %		Il roads should not exceed:		
94	The marinum armonatares		11 1 1 1 1		
	(3) 1 in 25	(4)	1 in 30		
	(1) 1 in 10	(2)	1 in 15		
	The value of ruling gradi	em as pe	a IRC in plants is :		

16

12_A]