प्रश्न पुस्तिका / QUESTION BOOKLET

पद कोड / Post Code : **81**

A बुकलेर सीरीज

विषय / Subject :

Mechanical Automobile Engineering

PAPER - 1

1

8

1

1

3

1

ă

8

7013661

माठड जीय क्षदीश्वर, स्टेट-भोटर जिरेज विकार संवीका परीका 2012

पुस्तिका क्रम

पुस्तिका में पृष्ठों की संख्या / Number of Pages in Booklet: 32

पुस्तिका में प्रश्नों की संख्या /

Number of Questions in Booklet: 100

समय / Time : 2.00 घंटे / Hours

INSTRUCTIONS

1. Answer all questions.

- 2. All questions carry equal marks.
- 3. Only one answer is to be given for each question.
- If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- 7. The candidate should ensure that Series Code of the Question Paper Booklet and Answer Sheet must be same after opening the envelopes. In case they are different, a candidate must obtain another question paper of the same series. Candidate himself shall be responsible for ensuring this.
- Mobile Phone or any other electronic gadget in the
 examination hall is strictly prohibited. A candidate
 found with any of such objectionable material with
 him/her will be strictly dealt as per rules.
- Please cirrectly fill your Roll Number in O.M.R.
 Sheet. 5 marks will be deducted for filling wrong or incomplete Roll Number.
- 10. If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorised material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted under Section 3 of the R.P.E. (Prevention of Unfairmeans) Act, 1992. Commission may also debar him/her permanently from all future examinations of the Commission.

पूर्णांक / Maximum Marks : 100

निर्देश

- l. सभी प्रश्नों के उत्तर दीजिए ।
- 2. सभी प्रश्नों के अंक समान हैं।
- 3. प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।
- 4. एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा ।
- 5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया हैं। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अयदा बबल को उत्तर-पत्रक पर नीते बॉल खाइंट पेन से गहरा करना है।
- 6. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से हैं। किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।
- 7. प्रश्न-पत्र पुरितका एवं उत्तर पत्रक के लिफाफे की सील खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुरितका पर वही सीरीज अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई मिनता हो तो वीक्षक से प्रश्न-पत्र की ही सीरीज वाला दूसरा प्रश्न-पत्र का लिफाफा प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।
- श. मोबाईल फोन अयवा इलेक्ट्रोनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित हैं। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रके पर सावधानी पूर्वक सही मरें। गलत अथवा अपूर्ण रोल नम्बर मरने पर 5 अंक कुल प्राप्तीको में से अनिवार्थ रूप से कार्ट जाएंगे।
- 10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की जुटि हो तो प्रश्न के हिन्दी तथा अंग्रेजी रूपान्तरों में से अंग्रेजी रूपान्तर मान्य होगा।
- चेतावनी: अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनधकृत सामग्री पाई जाती है, उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराई जायेगी और आर. पी. ई. (अनुचित साधनों की रोकदाम) अधिनयम, 1992 के नियम 3 के तहत कार्यवाही की जायेगी। साथ ही आयोग ऐसे अभ्यर्थी को भविष्य में होने वाली आयोग की समस्त परीक्षाओं से विवर्जित कर सकता है।

SEGAL FRE

DS81_A

SEAL

i	A th	ermodynamic cycle on which	petrol	engine works is
	(1)	Otto cycle	(2)	Diesel cycle
	(3)	Joule cycle	(4)	Rankine cycle
	पेट्रोल	इंजन किस ऊष्मागतिकी चक्र पर	कार्य	करता है ?
	(1)	ओटो चक्र	(2)	डीज़ल चक्र
٠.	(3)	जूल चक्र	(4)	रेंकाईन चक्र
2	The	power available on engine cra	ınk sh	naft is
	(1)	Indicated power	(2)	Friction power
	(3)	Brake power	(4)	Total power
	इंजन	क्रेंक शाफ्ट पर उपलब्ध शक्ति है		
	(1)	सूचित शक्ति	(2)	घर्षण शक्ति
	(3)	ब्रेक शक्ति	(4)	कुल शक्ति
3		ratio of the volume of the charge ne engine is called	admit	tted at N.T.P. to the swept volume
	(1)	Mechanical efficiency	(2)	Air standard efficiency
	(3)	Overall efficiency	(4)	Volumetric efficiency
	एन.टी कहला	_	चार्ज व	इंजन के सर्जित आयतन का अनुपात
	(1)	यान्त्रिक दक्षता	(2)	वायु मानक दक्षता
	(3)	कुल दक्षता	(4)	आयतनीय दक्षता
1	Air 1	refrigerator works on		•
	(1)	Carnot cycle	(2)	Reversed Brayton cycle
	(3)	Rankine cycle	(4)	Diesel cycle
	वायु	प्रशीतक कार्य करता है		
	(1)	कार्नोट चक्र पर	(2)	प्रत्यवर्ती ब्रेटन चक्र पर
•	(3)	रेनकाईन चक्र पर	(4)	डीजल चक्र पर

- 5 A cotter joint is used to transmit
 - (1) Axial tensile load only
 - (2) Axial compressive load only
 - (3) Combined axial and twisting load
 - (4) Axial tensile load or compressive load
 - एक कॉटर जोड़ किसका पारेषण करता है ?
 - (1) केवल अक्षीय तनन भार का
 - (2) केवल अक्षीय संपीड्य भार का
 - (3) अक्षीय तथा ऐंठन भार दोनों का
 - (4) अक्षीय तनन भार या संपीड्य भार का
- 6 A cantilever is a beam whose
 - (1) one end is fixed and other is free
 - (2) both ends are free
 - (3) both ends are fixed
 - (4) both ends are simply supported केन्टीलीवर एक धरन है जिसका
 - (1) एक सिरा बन्धा हुआ व एक सिरा मुक्त होता है।
 - (2) दोनों सिरे मुक्त होते हैं ।
 - (3) दोनों सिरे बंधे हुए होते हैं ।
 - (4) दोनों सिरे शुद्धालम्बित होते हैं ।
- 7 Bernoulli's equation relates
 - (1) Various forms of energy
 - (2) Various forces act on fluid
 - (3) Power developed to torque
 - (4) Kinetic energy of inlet and outlet of pipe बरनॉली समीकरण सम्बन्ध स्थापित करती है
 - (1) ऊर्जा के विभिन्न रूपों में
 - (2) तरल में लगने वाले विभिन्न बलों में
 - (3) उत्पादित शक्ति व बलाघूर्ण में
 - (4) पाईप के प्रवेश व निकास पर गतिज ऊर्जा में

- 8 Vena contracta will be formed
 - (d = diameter of orifice)
 - (1) at the edge of orifice
 - (2) at the distance 'd' from the edge of orifice
 - (3) at distance $\frac{d}{2}$ from the edge of orifice
 - (4) at distance $\frac{d}{4}$ from the edge of orifice

वीना संकोच कहाँ पर बनेगा ?

- (1) ऑरिफिस के किनारे पर
- (2) ऑरिफिस के किनारे से 'त' दूरी पर
- (3) ऑरिफिस के किनारे से ' $\frac{d}{2}$ ' दूरी पर
- (4) ऑरिफिस के किनारे से $\frac{d}{4}$ दूरी पर
- 9 For a kinematic chain which relation is true?
 - (L = No. of links, P = No. of pairs)
 - $(1) \quad L=2P-4$

(2) L = 2P + 4

(3) L = P - 4

(4) L = P + 4

शुद्ध गति चेन के लिये निम्न में से कौनसा कथन सत्य है ?

- (L = a + b + a) की संख्या, P = y + a की संख्या)
- (1) L=2P-4

(2) L = 2P + 4

(3) L = P - 4

- (4) L = P + 4
- 10 The requirement of a two piece propeller shaft is
 - (1) One universal joint
- (2) A centre support bearing
- (3) The shaft to be solid
- (4) Flange coupling

दो टुकड़ों वाली प्रोपेलर शाफ्ट के लिए आवश्यक है

- (1) एक यूनिवर्सल जोड़
- (2) एक मध्य सपोर्ट बीयरिंग
- (3) शाफ्ट ठोस होनी चाहिये
- (4) फ्लेंज कपलिंग

- 11 Most commonly used steering gear box in cars today is
 - (1) Rack and pinion type
- (2) Worm and worm wheel type
- (3) Cam and follower type
- (4) Worm and nut type

आजकल कारों में बहुतायत से प्रचलित कौनसे स्टीयरिंग गियर बॉक्स काम में लिया जाता है ?

- (1) रेक व पिनियन प्रकार का
- (2) वोर्म व वोर्म व्हील प्रकार का
- (3) केम व फॉलोवर प्रकार का
- (4) बोर्म व नट प्रकार का
- 12 Shock absorber in an automobile is used to
 - (1) absorb the shock energy
 - (2) dissipate the energy
 - (3) increase the energy
 - (4) provide extra fluid power

एक ऑटोमोबाईल में शॉक एब्सोर्बर काम में आता है

- (1) ऊर्जा अवशोषण के लिये
- (2) ऊर्जा का व्यय करने
- (3) ऊर्जा बढ़ाने के लिये
- (4) अतिरिक्त द्रव्य शक्ति प्रदान करने के लिये
- 13 Following are the components of primary ignition circuit of petrol engine
 - (1) contact breaker, condenser, distributor
 - (2) contact breaker, ignition coil, spark plug
 - (3) contact breaker, rotor, spark plug
 - (4) contact breaker, ignition switch, condenser

पेट्रोल इंजन के प्राथमिक प्रज्वलन परिपथ के अवयव है

- (1) कॉन्टेक्ट ब्रेकर, कन्डेन्सर, डिस्ट्रीब्यूटर
- (2) कॉन्टेक्ट ब्रेकर, इंग्निशन कॉईल, स्पार्क प्लग
- (3) कॉन्टेक्ट ब्रेकर, रोटर, स्पार्क प्लग
- (4) कॉन्टेक्ट ब्रेकर, इंग्निशन स्विच, कन्डेन्सर

14	Con	tact breaker point in an ign	nition cir	cuit are generally made of
	(1)	Plastic	(2)	Steel
	(3)	Copper	(4)	Tungston
	प्रज्वत	नन परिपथ में सम्बन्ध विच्छेदक	बिन्दु सा	मान्यतः बना होता है
	(1)	प्लास्टिक का	(2)	इस्पात का
	(3)	ताँबे का	(4)	टंगस्टन का
15	The	positive plate of a lead ac	id batter	y has
	(1)	PbO_2	(2)	Pb
	(3)	PbSO ₄	(4)	H_2SO_4
	सीसा	अम्लीय बैटरी की धनात्मक प्ले	ोट होती	}
	(1)	PbO_2	(2)	Pb
	(3)	PbSO ₄	(4)	H_2SO_4
16	The	capacity of battery is deter	mined by	y the no. of plates per cell and
	(1)	no. of cells	(2)	shape of plates
	(3)	size of plates	(4)	no. of separators
	_	की क्षमता प्रति सेल प्लेटों की सं नाती है ?	ांख्या तथा	निम्न में से किस घटक द्वारा निर्धारित
	(1)	सेलों की संख्या	(2)	प्लेटों की आकृति
	(3)	प्लेटों का नाप	(4)	सेपरेटरों की संख्या
		•		
17		ch equipment is not used in	n arc we	elding ?
	(1)	Electrode holder	(2)	Electrode
		Welding torch		Welding transformer
		वेल्डिंग में कौनसा उपकरण क	म में नही	ं आता है ?
	(1)	इलेक्ट्रोड होत्डर	(2)	इलेक्ट्रोङ
	(3)	वेल्डिंग टोर्च	(4)	वेल्डिंग ट्रान्सफॉर्मर
81_A	.] .	en e	6	[Contd

18	Which process is not p	possible on a milling machine ?
	(1) Key way cutting	(2) Facing
	(3) Gear cutting	(4) Thread cutting
	मिलिंग मशीन पर कौनसा	प्रक्रम सम्भव नहीं है ?
	(1) चाबी खांचा काटना	(2) फेसिंग करना
	(3) गियर काटना	(4) चूडी काटना
19	Material used for cutting	ng tool is
	(1) Mild steel	(2) High speed steel
	(3) Wrought iron	(4) Cast iron
	कटिंग टूल के लिये निम्न	में से कौनसा पदार्थ काम में आता है ?
	(I) मृदु इस्पात	(2) उच्च गति इस्पात
	(3) पिटवाँ लोहा	(4) ढलवाँ लोहा
20	A bar chart shows	•
	(1) Scheme of materia	al movement in a production process
	(2) Relationship amon	g different activities in a production process
	(3) Sequence of opera	ation to be carried out to manufacture a product
	(4) Progress of work	in a production process
	बार चार्ट प्रदर्शित करता है	•
	(1) उत्पादन प्रक्रम में सा	मग्री संचलन की योजना को
	(2) उत्पादन प्रक्रम के दौ	रान होने वाली विभिन्न प्रक्रियाओं के सम्बन्ध को
	(3) एक उत्पाद को उत्पार् के क्रम को	देत करने के लिये काम में आने वाली विभिन्न प्रक्रियाओं

(4) उत्पादन प्रक्रम के दौरान कार्य की प्रगति को

81_A]	8		Contd
	(3)	न्यूनतम व्यास के बिन्दु पर	(4)	अधिकतम व्यास के बिन्दु पर
				सिलिंडर के तत पर 🐃 🛶
	टेपर होती	सिलिंडर में रिंग बिठाते समय रिंग है	अंतर	ाल मापा जाता है जब रिंग स्थित
	(3)	point of minimum diameter		
	(1)	top of cylinder		bottom of cylinder
24	In fit locate	tting rings to the taper cylinde	ers, rii	ng gap is measured when ring
	(3)	टेकोमीटर	(4)	इंजन परीक्षक
	(1)	चेसिस डाईनेमोमीटर	(2)	इंजन डाईनेमोमीटर
	वह र्	पुक्ति जो रोड परीक्षण का बहुत न	जदीकी	सिन्निकटन देती है, वह है
	(3)	Tachometer	(4)	Engine tester
	(1)	Chassis dynamometer		Engine dynamometer
23	The	device which can give a very	close	approximation of a road test is
	(3)	सस्पेंशन कमानी	(4)	स्वतन्त्र सस्पेंशन
	` '	अवघात अवशोषक	(2)	ऐंठन छड
		का अन्य नाम है		
	(3)		(4)	Independent suspension
	(1)	Shock absorber	(2)	Torsion bar
22		ther name for damper is		
	(4)	उपरोक्त में से कोई नहीं		
	(3)	कार्य व घटना आधारित		
	(2)	घटना आधारित		
	(1)	कार्य आधारित		
	सी.पी	.एम. किस प्रकार की तकनीक है	j,	
	(4)	None of the above		
:	(3)	Activity and event oriented t	technic	que
· .".	(2)	Event oriented technique		
. ••	(1)	Activity oriented technique		

C.P.M. is an

				· · · · · · · · · · · · · · · · · · ·
25	Two	fundamental charging methods	are	constant voltage and
	(1)	Constant inductance	(2)	Constant resistance
	(3)	Constant capacitance	(4)	Constant current
	दो मू	लभूत चार्ज विधियाँ हैं, स्थिर विभव	वान्तर	तथा
	(1)	नियत प्रेरकत्व	(2)	नियत प्रतिरोध
	(3)	नियत धारिता	(4)	नियत धारा
				·
26	Matc	h most appropriately the follo	wing	list items:
	I	Compressor tester	Α	Checks intake manifold vacuum
	II	Tachometer	В	Checks ignition timing
	Ш	Vacuum gauge	C	Checks engine R.P.M.
	IV	Timing light	D	Checks cylinder compression
	(1)	I-A, II-C, III-D, IV-B		
	(2)	I-D, II-A, III-C, IV-B		
	(3)	I-D, II-C, III-B, IV-A		
	(4)	I-D, II-C, III-A, IV-B		
	निम्न	सूची के अवयवों का यथा सम्भव	मिलान	ा कीजिये :
	I	कम्प्रेसर परीक्षक	A	इनटेक मेनिफोल्ड निर्वात जांच
	IJ	टेकोमीटर	В	इग्निशन टाईमिंग जांच
	Ш	वेक्यूम गेज	C	इंजन R.P.M. जांच
	IV	टाईमिंग लाईट	D	सिलिंडर संपीडन जांच
	(1)	I-A, II-C, III-D, IV-B		
	(2)	I-D, II-A, III-C, IV-B		
	(3)	I-D, II-C, III-B, IV-A		
	(4)	I-D, II-C, III-A, IV-B		
		•		
27	In pe	etrol engine the high voltage f	or sp	ark is in the range of
	(l)	11 kV to 22 kV	(2)	5000 V to 8000 V
	(3)	2000 V to 3000 V	(4)	440 V to 1100 V
	पेट्रोल	इंजन में स्पार्क हेतु उच्च विभव	का पर	प्रस होता है :
	(1)	11 kV से 22 kV तक	(2)	5000 V से 8000 V तक
	(3)	2000 V से 3000 V तक	(4)	440 V से 1100 V तक
81_ <i>A</i>	.1	9 .		[Contd
	1			[

20	1011	ci window iii aii autoillooi	ie is obe	iaica	
	(1)	directly by engine crank	shaft		
	(2)	directly by alternator		·	Andrew State Control
	(3)	by hand crank			
	(4)	by an electric motor			
	एक	ऑटोमोबाईल में पॉवर विंडो सं	चालित होत	ती है	
. •	(1)	सीधे इंजन क्रेन्क शाफ्ट द्वारा			
	(2)	सीधे आल्टरनेट द्वारा			
	(3)	हस्त क्रेन्क द्वारा			
	(4)	विद्युत मोटर द्वारा			
29	Num	ber of sections in Motor	Vehicle A	ct, 1988 are	
	(1)	215	(2)	216	
	(3)	217	(4)	218	
	मोटर	वाहन अधिनियम, 1988 में द्	कुल कितनी	ं धाराएँ हैं ?	
	(1)	215	(2)	216	
	(3)	217	(4)	218	
30	Whic	h physical quantity is deriv	red from	second law of	thermodynamics?
	(1)	Enthalpy	(2)	Entropy	
	(3)	Specific heat	(4)	Latent heat	
	ऊष्मा	ातिकी के द्वितीय नियम से कि	स भौतिक	राशि का व्यूत्पन्न	होता है ?
	(1)	एन्थैल्पी	(2)	एन्ट्रोपी	
	(3)	विशिष्ट ऊष्मा	(4)	गुप्त ऊष्मा	
31	What	is value of 'n' for consta	nt volume	e process in po	lytropic process
	PV^n	=C ?			
	(1)	Infinite	(2)	One	
	(3)	Zero	(4)	Gama (γ)	
	ब्हुपद	प्रक्रम $PV^n = C$ में स्थिर उ	ायतन प्रक्र	म में <i>n</i> का मान	कितना होता है ?
	(1)	अनन्त	(2)	एक	•
	(3)	शून्य	(4)	गामा (γ)	
81_A]		10 .	erral	[Contd

Down

mindone

32		ch out of the following is equanodynamics?	tion o	f state for hyperbolic process in
	(1)	$PV^2 = C$	(2)	$\frac{P}{V} = C$
	(3)	PV = C	(4)	$PV^{\gamma} = C$
	ऊष्मा	गतिकी में अतिपरवलय प्रक्रम की	अवस्था	समीकरण निम्न में से कौनसी है ?
	(1)	$PV^2 = C$	(2)	$\frac{P}{V} = C$
	(3)	PV = C	(4)	$PV^{\gamma} = C$
33		C. engine, for same compression highest efficiency ?	ratio	and same heat input which cycle
	(1)	Dual cycle	(2)	Diesel cycle
	(3)	Otto cycle	(4)	Same in all cases
		हिन इंजन में समान दबाव अनुपात hस चक्र की दक्षता सर्वाधिक होगी		ममान ऊष्मा आवक के लिये निम्न में
	(1)	ड्यूल चक्र	(2)	डीज़ल चक्र
	(3)	ऑटो चक्र	(4)	सभी में समान
34	In S	I. engine if flames are detected	d betv	veen TDC and 45° then cycle is
	(1)	Partial burn cycle	(2)	Slow burn cycle
	(3)	Fast burn cycle	(4)	Early burn cycle
	एस.७ होता	_	ान टी.ः	डी.सी. एवं 45° के मध्य हो तो चक्र
	(1)	आंशिक दहन चक्र	(2)	धीमा दहन चक्र
	(3)	तेज दहन चक्र	(4)	समयपूर्व दहन चक्र
		•		•
35		rding spark timing, the possibne will	ility o	of knock in internal combustion
	(1)	Increase	(2)	Decrease
		Not take place	• •	Not affected
	अन्तर	हिन इंजन में स्पार्क समय को मंदि	त कर	ने से नॉक की संभावना में —
	(1)	वृद्धि होगी	(2)	कमी होगी
	(3)	नॉक नहीं होगा	(4)	नॉक अप्रभावित
81_4	A]	11		[Contd

-				
36		r fuel ratio is increased then the will be less?	which	emission in internal combustion
	(1)		(2)	CO
	(3)		(4)	e de la companya de
		and the second of the second o		े कौनसा उत्सर्जन अन्तर्दहन इंजन में
		होगा ?		न कार्या अस्तपम अन्तदहम इजन म
	(1)	HC	(2)	CO
	(3)	NO	(4)	CH ₂ O
37	For tension	maximum power transmission on and maximum tension shou	throug ıld be	gh belt, the ratio of centrifugal
	(1)	1:1	(2)	1:2
	(3)	1:3	(4)	1:4
		ांचरण में अधिकतम शक्ति संचरण वे ानुपात होता है –	ह लिए	अपकेन्द्री तनाव और अधिकतम तनाव
	(1)	1:1	(2)	1:2
	(3)	1:3	(4)	1:4
38	(1) (3) निम्न (1)	h out the following is transm Torsion dynamometer Belt Dynamometer में से कौनसा संचरण डायनमोमापी मरोड़ डायनमोमापी	(2) (4) है ?	Hydraulic dynamometer Prony brake dynamometer
	(3)	बैल्ट डायनभोमापी	(4)	प्रोनी ब्रेक डायनमोमापी
39		ifugal tension in belt drive is gi is unit of 'm' here?	ven by	$T_C = mV^2$, here V is velocity,
	(1),	-	(2)	$kg m^{-1}$
	(3)	$kg \mathrm{sec}^{-1}$	(4)	kg^2
		गलन में अपकेन्द्री तनाव का सूत्र 1 मात्रक है –	<i>T_C</i> =	mV^2 है। यहाँ पर V वेग है।
	(1)	kg किग्रा	(2)	$kg m^{-1}$ किया मी $^{-1}$
	(3)	$kg \sec^{-1}$ किग्रा सेकेण्ड $^{-1}$	(4)	kg^2 किग्रा ²
81_A]	12 ·		[Contd

- 40 In machine design the factor for R5 series is
 - (1) 1.03

(2) 1.58

(3) 1.78

(4) 1.12

मशीन अभिकल्पना में R5 शृंखला का गुणक कितना है ?

(1) 1.03

(2) 1.58

(3) 1.78

- (4) 1.12
- 41 The designation of a plain carbon steel is 55C4. What is the percentage of carbon in it?
 - (1) 4%

(2) 55%

(3) 59%

(4) 51%

एक सरल कार्बन इस्पात का मानक (पद संज्ञा) 55C4 है तो इसमें कार्बन का प्रतिशत होगा

(1) 4%

(2) 55%

(3) 59%

- (4) 51%
- 42 If in cotter joint T = tension, $\sigma = \text{stress}$, d = diameter then their relationship is -
 - (1) $T = \sqrt{\frac{4d}{\pi\sigma}}$

(2) $\sigma = \sqrt{\frac{4T}{\pi d}}$

(3) $d = \sqrt{\frac{4T}{\pi\sigma}}$

(4) None of the above

ंयिर कोटर जोड़ में T= तनाव, $\sigma=$ प्रतिबल, d= व्यास है, तो इनमें सम्बन्ध है-

(1) $T = \sqrt{\frac{4d}{\pi\sigma}}$

(2) $\sigma = \sqrt{\frac{4T}{\pi d}}$

 $(3) d = \sqrt{\frac{4T}{\pi G}}$

(4) इनमें से कोई नहीं

43 If N = modulus of rigidity, K = bulk coefficient of elasticity, E = Young's modulus of elasticity then relation between them is -

$$(1) E = \frac{9NK}{K+N}$$

$$(2) E = \frac{3NK}{K+3N}$$

$$(3) E = \frac{3NK}{9N + K}$$

$$(4) E = \frac{9NK}{3K+N}$$

यदि N= दृढ़ता गुणांक, K= बल्क प्रत्यास्थता गुणांक, E= यंग का प्रत्यास्थता गुणांक है तो तीनों में सम्बन्ध है -

$$(1) E = \frac{9NK}{K+N}$$

$$(2) E = \frac{3NK}{K+3N}$$

$$(3) E = \frac{3NK}{9N + K}$$

$$(4) E = \frac{9NK}{3K+N}$$

44 Section of modulus of beam section as shown is -

(1)
$$\frac{bd^3}{12}$$

$$(2) \quad \frac{bd^3}{6}$$

$$(3) \quad \frac{bd^2}{12}$$

$$(4) \quad \frac{bd^2}{6}$$

निम्न धरन परिच्छेद का मापांक है

$$(1) \quad \frac{bd^3}{12}$$

(2)
$$\frac{bd^3}{6}$$

$$(3) \quad \frac{bd^2}{12}$$

$$(4) \quad \frac{bd^2}{6}$$

45 In the following Mohr's circle the normal stress p_n and tangential stress p_t is -

(1) OQ and PQ

(2) PB and PC

(3) OC and OP

(4) OP and PC

निम्न मोहर वृत्त में अभिलम्बवत् प्रतिबल p_n तथा स्पर्श रेखीय प्रतिबल p_t का मान है —

(1) OQ तथा PQ

(2) PB तथा PC

(3) OC तथा OP

- (4) OP तथा PC
- 46 The length of a column is *l*. It's one end is fixed while other is hinged. It's equivalent length is -
 - (1)

(2) $\sqrt{2} l$

 $(3) \quad \frac{l}{2}$

 $(4) \quad \frac{l}{\sqrt{2}}$

एक स्तम्भ की लम्बाई I है । इसका एक सिरा स्थिर तथा दूसरा कब्जेदार है । इसकी तुल्य लम्बाई है -

(1)

(2) $\sqrt{2}$

 $(3) \quad \frac{l}{2}$

(4) $\frac{l}{\sqrt{2}}$

			et programme in the contract of the contract o
47	One ton of refrigeration in kJ/m	in is	
	(I) 200	(2)	3.5
	(3) 210	(4)	310
	एक टन प्रशीतन का मान किलोजूल/मि	नट में	₹ -
	(1) 200	(2)	3.5
	(3) 210	(4)	310
48	The chemical formula of a refrige	erant i	s CCl ₃ F. It's ASRE number is -
	(1) R10	(2)	R11
	(3) R12	(4)	R13
	एक प्रशीतक का रासायनिक सूत्र CCl	₃F है	। इसका ASRE क्रमांक है -
	(1) R10	(2)	R11
	(3) R12	(4)	R13
49	What will be value of tail stock of job of 60 mm length?	offset	to turn a taper of 1 in 12 on a
	(1) 5 mm	(2)	2.5 mm
	(3) 1.5 mm	(4)	4.5 mm
	एक 60 mm लम्बी जॉब में 1 में 12 का मान है –	टेपर प्र	दान करने के लिए टेलस्टॉक ऑफसेट
	(1) 5 मिमी	(2)	2.5 मिमी
	(3) 1.5 मिमी	(4)	4.5 मिमी
50	In spot welding heat is produced	by -	•
	(1) Electric current	(2)	Chemical reaction
	(3) Gas	(4)	Blacksmith fire
	स्पॉट वेल्डन में ऊष्मा किससे उत्पन्न व	गे जार्त	ो है ?
	(1) विद्युत धारा से	(2)	रासायनिक अभिक्रिया से
	(3) गैस से	(4)	ब्लैकस्मिथ ऊष्मा से

16

[Contd...

81_A]

		•
51	GTAW stands for -	
	(1) Gear Train Arc Welding	
٠.	(2) Gas Turbine Arc Welding	
	(3) Green Temperature Arc We	elding
	(4) Gas Tunguston Arc Weldin	g
	जीटीएडब्लू का विस्तार है –	•
	(1) गियर ट्रेन आर्क वैल्डिंग	
	(2) गैस टरबाईन आर्क वैल्डिंग	
	(3) ग्रीन टेम्प्रेचर आर्क वैल्डिंग	•
	(4) गैस टंग्स्टन आर्क वैल्डिंग	
52	Poise is unit of -	
	(1) Pressure	(2) Viscosity
	(3) Density	(4) Vapour pressure
	पॉइज निम्न में से किसका मात्रक है	?
	(1) दाब	(2) श्यानता
	(3) घनत्व	(4) वाष्प दाब
53	Gauge pressure at a place is 75 in head will be -	m water. The value of absolute pressure
	(1) 76 m water	(2) 85.34 m water
	(3) 75.34 m water	(4) 64.66 m water
	किसी स्थान पर गेज दाब 75 मी पा	नी है । वहाँ पर निरपेक्ष दाब शीर्ष होगा –
	(l) 76 मी पानी	(2) 85.34 मी पानी
	(3) 75.34 मी पानी	(4) 64.66 मी पानी
	•	•
54	Which device out of the following velocity?	ng is used for measurement of flow
	(1) Venturimeter	(2) Pitot tube
	(3) Orifice meter	(4) None of above
	निम्नलिखित में से कौनसी युक्ति प्रवाह	वेग मापन के लिये प्रयुक्त की जाती है ?
	(1) वेन्चुरीमापी	(2) पिटोट नली
	(3) ऑरिफिस मापी	(4) उपरोक्त में से कोई नहीं
81_		7 Contd

- Energy head in HGL (Hydraulic Gradient Line) is -(P = Pressure, Z = Datum head, W = weight density, V = velocity) (2) $\frac{P}{W} + Z$ $(3) \quad \frac{P}{W} + \frac{V^2}{2\sigma} + Z$ All of above द्रवीय ढ़ाल रेखा (एच.जी.एल.) में ऊर्जा शीर्ष है - $(P = \operatorname{GIM}, Z = \operatorname{Hilb}, W = \operatorname{Hilb}, W = \operatorname{Hilb}, V = \operatorname{diff})$ (1) $\frac{P}{W}$ (2) $\frac{P}{W} + Z$ $(3) \quad \frac{P}{W} + \frac{V^2}{2\sigma} + Z$ उपरोक्त सभी (4) 56 Which out of the following is not a method to calculate depreciation? (1)Straight line method **(2)** ABC analysis method Diminishing balance method (4) Sinking fund method निम्न में से कौनसी विधि मूल्य ह्रास ज्ञात करने की नहीं है ? सरल रेखा विधि (1) ए.बी.सी. विश्लेषण विधि **(2)**
- 57 Which type of element has highest percentage of total cost in ABC analysis?
 - (1) A

(3)

ह्रासमान शेष विधि

(2) B

(4)

(3) C

(4) None of above

शोधन निधि विधि

ए.बी.सी. विश्लेषण में कौनसे अवयव कुल लागत का सर्वाधिक प्रतिशत होते है ?

. (!) A

(2) B

(3) C

(4) इनमें से कोई नहीं

81_A]

		•	
58	In process chart technique, f	ollowing symbol is for	
	\mathcal{T}		
	(1) Inspection	(2) Operation	
	(3) Transportation	(4) Storage	
	प्रक्रम चार्ट तकनीक में निम्न संके	त किसका है ?	
	1		
	Υ		
	(1) निरीक्षण	(2) परिचालन	
	(3) परिवहन	(4) संग्रहण	
59	Which is not a operating sys	tem ?	
	(1) Lynex	(2) DOS	
	(3) Unix	(4) MS Office	
	निम्न में से कौनसा ऑपरेटिंग सिर		
	(1) लाइनेक्स	(2) डॉस	
	(3) यूनिक्स	(4) एम एस ऑफिस	
	•	, , , , , , , , , , , , , , , , , , , ,	
60	Which is a wrong variable in	ı 'C' language ?	
	(1) goto	(2) X1	
	(3) Ram	(4) T20	
	निम्न में से C भाषा में एक गलत	त चर है <i>-</i>	
	(1) goto	(2) X1	
	(3) Ram	(4) T20	
	•	.,	
61	In 'C' language which logical	operator means 'NOT' ?	
	(1) \$ \$	(2)	
	(3) !	(4) None of above	
	'C' भाषा में किस तार्किक प्रचालक	का अर्थ 'NOT' है ?	
	(i) \$ \$	(2)	
	(3) !	(4) इनमें से कोई नहीं	
31_ <i>A</i>	4 1	19	[<i>C</i> _44
	·¬ ,	17	[Contd

62	What is use of gearbox in autom	obile?	
	(1) Torque change	(2) Motion change	
	(3) Position change	(4) Time change	
	ऑटोमोबाइल में गियर बॉक्स का उद्देश	म है —	
	(1) बलाघूर्ण परिवर्तन	(2) गति परिवर्तन	
	(3) स्थिति परिवर्तन	(4) समय परिवर्तन	
63	Wheel track is distance between		
	(1) Front and rear axle		•
	(2) Tyres of front wheel		
	(3) Clutch and gear box		
	(4) All of above		
	व्हील ट्रेक किनके मध्य दूरी है ?		
	(1) अगले और पिछले धुरे के मध्य		
	(2) अगले पहियों के मध्य दूरी		
	(3) क्लच एवं गियर बॉक्स के मध्य	दूरी	
	(4) उपरोक्त सभी		
64	The central gear in epicyclic gear	box is known as -	
	(1) Ring gear	(2) Planet gear	
	(3) Sun gear	(4) Internal gear	
	बाह्यचक्री गियर बॉक्स में केन्द्रिय गिय	र को कहते है –	
	(1) वलय गियर	(2) ग्रहयी गियर	
•	(3) सूर्य गियर	(4) आंतरिक गियर	
65	Which property of electrolyte is in	nportant for charging stat	e of battery ?
	(1) Temperature	(2) Pressure	
	(3) Chemical composition	(4) Specific gravity	
	बैट्री की चार्जिंग दशा को दर्शाने के दृ गुणधर्म है —	ष्टिकोण से विद्युत अपघट्य	का महत्वपूर्ण
	(1) तापमान	(2)	
	(3) रासायनिक संगठन	(4) विशिष्ट घनत्व	
81_	A] 20	1	[Contd

66	Which type of reflector is used	l in head	light of automobile?	
	(1) Spherical	(2)	Hyperbolic	
	(3) Parabolic	(4)	Rectangular	٠.
	ऑटोमोबाईल की हैड बत्ती में किस	प्रकार का	प्रकाशक्षेपी प्रयुक्त करते है	?
	(1) गोलीय	(2)	अतिपरवलयाकार	
	(३) परवलयाकार	(4)	अग्रामान्तर	

- 67 What is meaning of TDC with reference to automobile?
 - (1) Turning direction clockwise
 - (2) True dead centre
 - (3) Top dead centre
 - (4) Turning direction counter clockwise ऑटोमोबाईल में टी.डी.सी. का अर्थ है -
 - (1) टर्निंग डायरेक्शन क्लॉकवाईज
 - (2) **टू** डेड सेंटर
 - (3) टॉप डेड सेंटर
 - (4) टर्निंग डायरेक्शन काऊन्टर क्लॉकवाईज
- 68 Meaning of brake bleeding is -
 - (1) Repair of leakage of braking system
 - (2) Removal of water from braking system
 - (3) Removal of air from braking system
 - (4) None of above ब्रेक ब्लीडिंग का अर्थ है –
 - (1) ब्रेकिंग प्रणाली के क्षरण को ठीक करना
 - (2) ब्रेकिंग प्रणाली से पानी बाहर निकालना
 - (3) ब्रेकिंग प्रणाली से हवा बाहर निकालना
 - (4) इनमें से कोई नहीं

	(1) Pressure and temperature (2) Internal energy							
	(3) Enthalpy and entropy (4) All of the above							
	निम्न में से कौनसा ऊष्मागतिक तंत्र का गुणधर्म हैं ?							
	(1) दाब और तापमान (2) आंतरिक ऊर्जा							
	(3) तापीय धारिता और एन्ट्रापी (4) उपरोक्त सभी							
70	During which of the following process does heat rejection takes place in Carnot cycle?							
	(1) Isothermal expansion (2) Isentropic expansion							
	(3) Isothermal compression (4) Isentropic compression							
	कार्नोट चक्र में निम्नलिखित किस प्रक्रम के दौरान ऊष्मा त्याग होता है ?							
	(1) समतापीय प्रसार (2) रुद्धोष्म प्रसार							
	(3) समतापीय संपीड़न (4) रुद्धोष्म संपीड़न							
71	In a Diesel engine, the fuel is ignited by:							
	(1) an electric spark							
	(2) the heat of compression							
	(3) the hot exhaust							
	(4) hot combustion chamber components							
	एक डीज़ल इंजन में इंधन प्रज्वलित किया जाता है :							
	(1) एक विद्युत स्पार्क द्वारा							
	(2) सम्पीड़न की गर्मी के द्वारा							
	(3) गर्म निकास द्वारा							
	(4) दहन कक्ष के तप्त घटकों द्वारा							
72	Most suitable combustion chamber for multifuel capability is -							
	(1) Open combustion chamber							
	(2) Bath tub type combustion chamber •							
	(3) Pre combustion chamber							

Which of the following is the property of a thermodynamic system ?

(1)

(2)

(3)

(4)

M combustion chamber

बाथ टब प्रकार का दहन कक्ष

खुला दहन कक्ष

पूर्व दहन कक्ष

'एम' दहन कक्ष

बहु ईंधन क्षमता के लिये सर्वाधिक उपयुक्त दहन कक्ष है --

- 73 In order to eliminate knocking in compression ignition engines, there should be:
 - (1) late auto ignition
 - (2) low compression ratio
 - (3) short delay period
 - (4) high self ignition temperature of fuel सम्पीड़न दहन इंजन में नीकिंग समाप्त करने हेतु होना चाहिये –
 - (1) बिलंबित स्वतः प्रज्वलन
 - (2) निम्न संपीड़न अनुपात
 - (3) छोटी विलम्बित अवधि
 - (4) ईंधन का उच्च स्वतः प्रज्वलन तापमान
- 74 Which statement is true in context of engine performance curve?
 - (1) as engine R.P.M. increases, mechanical efficiency increases
 - (2) an engine R.P.M. increases, friction power decreases
 - (3) an engine R.P.M. increases, indicated power decreases
 - (4) as engine R.P.M. increased, fuel combustion increases इंजन निष्पादन वक्र के संदर्भ में कौनसा कथन सत्य है ?
 - (1) जैसे-जैसे इंजन R.P.M. बढ़ती जाती है, यांत्रिक क्षमता बढ़ती जाती है ।
 - (2) जैसे-जैसे इंजन R.P.M. बढ़ती जाती है, घर्षण शक्ति कम होती जाती है ।
 - (3) जैसे-जैसे इंजन R.P.M. बढ़ती जाती है, सूचित शक्ति कम होती जाती है ।
 - (4) जैसे-जैसे इंजन R.P.M. बढ़ती जाती है, इंधन की खपत बढ़ती जाती है।
- 75 A hunting governor is :
 - (1) more stable

(2) more sensitive

(3) less sensitive

(4) none of these

हंटिंग करता गवर्नर :

- (1) ज्यादा स्थिर होता है
- (2) ज्यादा सुग्राही होता है
- (3) कम सुग्राही होता है
- (4) उपरोक्त में से कोई नहीं

- 76 For low speed engines, the cam follower should move with
 - (1) Simple harmonic motion
 - (2) Uniform velocity
 - (3) Uniform acceleration and retardation
 - (4) Cycloidal motion

निम्न गति के इंजन हेतु केम फोलोवर की गति होनी चाहीये -

- (1) सरल आवर्त गति
- (2) समरूप वेग
- (3) समरूप त्वरण तथा मंदन
- (4) सायक्लोईडल गति

77 Stress concentration is caused due to :

- (1) variation in properties of material from point to point in member
- (2) pitting at point or areas at which loads on member are applied
- (3) abrupt change of section
- (4) all of the above

प्रतिबल सांद्रण होने का कारण है -

- (1) किसी मेम्बर में पदार्थ के गुणधर्म में विभिन्न बिंदुओं पर अंतर
- (2) मेम्बर पर भार आरोपण बिंदु पर गत्त होना
- (3) काट में सहसा परिवर्तन
- (4) उपरोक्त सभी
- 78 The value of stress which causes unit strain is called:
 - (1) modulus of elasticity
- (2) unit stress
- (3) bulk modulus of elasticity (4) modulus of rigidity एकांक विकृति के लिए प्रतिबल का मान कहलाता है :
- (1) प्रत्यास्थता गुणांक
- (2) एकांक प्रतिबल
- (3) बल्क प्रत्यास्थता गुणांक
- (4) दृढ़ता गुणांक

79	The neutral axis of the cross section of a beam is that axis at which the bending stress is							
	(I) minimum	(2)	maximum					
	(3) infinity	(4)	zero					
	किसी धरन के अनुप्रस्थ काट का उदार का मान —	प्तीन वह	अक्ष होता है जहाँ पर बंकन प्रतिबल					
	(1) न्यूनतम होता है	(2)	अधिकतम होता है					
	(3) अनंत होता है	(4)	शून्य होता है					
80	Shear stress on principal planes is -							
	(1) maximum	(2)	minimum					
	(3) zero	(4)	none of the above					
	प्रधान तलों पर अपरूपण प्रतिबल का मान होता है —							
	(1) अधिकतम	(2)	न्यूनतम					
	(3) शून्य	(4)	उपरोक्त में से कोई नहीं					
81	The refrigerant for a refrigeration should have :							
	(1) high sensible heat	(2)	high total heat					
	(3) low latent heat	(4)	high latent heat					
	प्रशीतलनकारी के लिए प्रशीतन में होनी चाहिए :							
	(1) उच्च संवेदी ऊष्मा	(2)	उच्च कुल ऊष्मा					
	(3) निम्न गुप्त ऊष्मा	(4)	उच्च गुप्त ऊष्मा					
82	The value of wet bulb temperature during sensible heating of air :							
	(1) remains constant	(2)	increases					
	(3) decreases	(4)	none of the above					
	वायु के संवेदी तापन के दौरान आर्द्र	बल्ब ता	पंका मान :					
	(1) स्थिर रहता है	(2)	बढ़ता है					
	(3) घटता है	(4)	उपरोक्त में से कोई नहीं					

25

[Contd...

81_A]

83		psychrometric process, the sent the heat added is 20 kJ/sec. The be		the state of the s				
•	(1)	0.30	(2)	0.67				
	(3)	0.60	(4)	1.5				
		साइक्रोमीट्री प्रक्रम में दी गई संवेदी cJ/sec है । इस प्रक्रम का संवेदी		~	ऊष्मा			
-	(1)	0.30	(2)	0.67				
	(3)	0.60	(4)	1.5				
84	(1) (2) (3) (4)	nventory control theory, the edaverage level of inventory optimum lot size capacity of ware house lot size corresponding to bre सूची नियंत्रण में मितव्ययी मात्रा व वस्तु सूची का औसत स्तर इष्टतम खेप मात्रा एक गोदाम की क्षमता के संगत खेप	eak-eve आदेश	en analyses				
85	Work study is done with the help of							
	(1)	process chart	(2)	stop watch	•			
	(3)	material handling	(4)	none of the above				
	कार्य	अध्ययन निम्न में से किसकी सहा	यता से	किया जाता है ?				
	(1)	प्रक्रम आरेख से	(2)	विराम घड़ी से				
	(3)	सामग्री प्रहस्तन से	(4)	उपरोक्त में से कोई नह	ों			
			•	-				
86	Which of the following welding process uses non consumable electrodes?							
		MIG welding	(2)					
	(3)	Manual arc welding	(4)	TIG welding				
	_	लेखित में से कौनसी बैल्डिंग की प्र है ?	क्रिया	गैर उपभोज्य इलैक्ट्रोड व	ज उपयोग			
	(1)	एम आई जी वैल्डिंग	(2)	जलमग्न आर्क वैल्डिंग	•			
		मैनुअल आर्क वैल्डिंग						
81_A	.]	26		est de la companya de	[Contd			

87	The electrodes used in spot well	lding have a tip of -							
	(1) stainless steel	(2) copper							
	(3) aluminium	(4) brass							
	स्पॉट वैल्डिंग में प्रयुक्त होने वाले इत	नैक्ट्रोड की टिप बनी होती है -							
	(1) स्टेनलेस इस्पात की	(2) तांबा की							
	(3) एल्यूमिनियम की	(4) पीतल की							
88	The cold chisels are made by:								
	(1) drawing	(2) piercing							
	(3) forging	(4) rolling							
	ठंडी छेनी किस प्रक्रम से बनती है	?							
	(1) ड्राईंग से	(2) छेदन से							
	(3) फोर्जन से	(4) रोलिंग से							
89	In ultrasonic machining, the metal is removed by :								
(1) using abrasive slurry between the tool and work piece.									
	(2) direct contact of tool with	the work piece.							
	(3) maintaining an electrolyte between the tool and work piece in a ve small gap between the two.								
	(4) erosion caused by rapidly recand work piece.	curring spark discharges between the tool							
	अल्ट्रासोनिक मशीनन में धातु किस प्र								
	(1) औजार व कार्यखण्ड के मध्य र	अपघर्षण गारे के उपयोग से							
	(2) औजार व कार्यखण्ड के मध्य स	तीधे स्पर्श से							
	(3) औजार व कार्यखण्ड के मध्य म	हीन अंतर में वैद्युत अपघट्य बनाये रखते हुए							

(4) औजार व कार्यखण्ड के मध्य तीव्र आवर्तित स्पार्क स्खलन द्वारा क्षय करके

[Contd...

27

81_A]

(A)	Fluid flow is frictionless and irrotational
(B)	Fluid flow is steady
(C)	Fluid flow is uniform and turbulent
(D)	Fluid is compressible
(E)	Fluid is incompressible
(1)	(A), (C), (D)
(2)	(A), (B), (E)
(3)	(B), (D), (E)
(4)	(A), (D), (E)
_	लिखित सूचीबद्ध परिकल्पनाओं में से कौनसी परिकल्पनाओं का समूह बरनुली करण की व्युत्पत्ति में प्रयुक्त होता है ?
(A)	तरल का प्रवाह प्रतिरोधहीन तथा अघूर्णीय है
(B)	तरल का प्रवाह स्थिर
(C)	तरल का प्रवाह सतत व विक्षुब्ध हैं
(D)	तरल संपीड्य है
(E)	तरल असंपीड्य है
(1)	(A), (C), (D)
(2)	(A), (B), (E)
(3)	(B), (D), (E)
(4)	(A), (D), (E)
91 Proj	perty of a fluid by which molecules of different kinds of fluids are acted to each other is called:
(1)	adhesion (2) cohesion
(3)	viscosity (4) surface tension
	का वह गुणधर्म जिसके द्वारा विभिन्न प्रकार के तरलों के अणु एक दूसरे को र्षित करते हैं —
(1)	आसंजन (2) संसंजन
(3)	श्यानता (4) पृष्ठ तनाव
81 A I	28 I Contd

Out of the assumptions listed below, which set of assumption is used in

derivation of Bernoulli's equation?

90

- 92 Coefficient of resistance of orifice is the ratio of :
 - (1) actual velocity of jet at vena-contracta to the theoretical velocity.
 - (2) area of jet at vena-contracta to the area of orifice.
 - (3) actual discharge though an orifice to the theoretical discharge.
 - (4) loss of the head in the orifice to the head of water available at the exit of the orifice.

छिद्रक का प्रतिरोध गुणांक, अनुपात होता है :

- (1) प्रधार का वीना संकोच पर वास्तविक वेग तथा सैद्धांतिक वेग में
- (2) प्रधार का वीना संकोच पर क्षेत्रफल तथा छिद्रक क्षेत्रफल में
- (3) छिद्रक से निकलने वाला वास्तविक एवं सैद्धांतिक निस्सरण में
- (4) छिद्रक में शीर्ष हानि तथा छिद्रक के निकास पर पानी के उपलब्ध शीर्ष में
- 93 Cooling system is most effective and simplified while engine is :
 - (1) in front of vehicle
 - (2) behind the vehicle in right side
 - (3) behind the vehicle in left side
 - (4) in the middle of vehicle

वाहन में इंजन की कौनसी स्थिति में शीतलन प्रणाली सबसे आसान तथा प्रभावशाली होती है ?

- (1) वाहन में आगे
- (2) वाहन में पीछे दायीं तरफ
- (3) वाहन में पीछे बायीं तरफ
- (4) वाहन के मध्य भाग में
- 94 Interlocking mechanism of gear selection mechanism is provided for :
 - (1) easy shifting of gears
 - (2) ensuring that only one gear engaged at a time
 - (3) locking of gear shift while vehicle is parked
 - (4) protection and sealing of gear box

गियर चयन यंत्रावली में अंतर तालाबंदी यंत्रावली का प्रयोजन है :

- (1) गियरों का आसान विस्थापन
- (2) एक समय में एक ही गियर लगने का सुनिश्चयन
- (3) वाहन पार्किंग के समय गियर शिफ्ट रोधन
- (4) गियर बॉक्स का बचाव तथा सीलबंदी

95	The	purpose	of	a	clutch	in	vehicle	is	to

- (1) To provide a linkage, capable of transmitting the maximum engine torque.
- (2) To provide a linkage, capable of transmitting the maximum engine power.
- (3) To provide leverage to the torque produced by engine.
- (4) To provide leverage to the R.P.M. of engine crank shaft. वाहनों का क्लच का उद्देश्य है :
- (1) अधिकतम इंजन आधूर्ण संचारित करने में सक्षम कड़ी बनना
- (2) अधिकतम इंजन शक्ति संचारित करने में सक्षम कड़ी बनना
- (3) इंजन द्वारा उत्पन्न आधूर्ण को उत्तोलित करना
- (4) इंजन क्रेंक शाफ्ट के आर.पी.एम. को उत्तोलित करना

96	The crank	shaft is	suspended	from	the	lower	part	of the	
----	-----------	----------	-----------	------	-----	-------	------	--------	--

(1) crank case

(2) cylinder block

(3) oil pan

(4) cylinder head

निम्न में से किस युक्ति के निचले भाग से क्रेंक शाफ्ट निलंबित रहती है ?

(1) क्रेंक केस

(2) सिलेन्डर ब्लॉक

(3) तेल पेन

(4) सिलेन्डर शीर्ष

97 The gear shift lever in a four wheeler requires two separate motion to shift gears, out of which the first movement is:

- (1) select the synchronizer
- (2) moves the synchronizer
- (3) meshes the gears
- (4) operates the clutch

चार पहिया वाहन में गियर परिवर्तन हेतु गियर परिवर्तक उत्तोलक के दो मिन्न संचलन आवश्यक है । इनमें से प्रथम संचलन का कार्य है :

- (1) समतुल्यकारी का चयन
- · (2) समतुल्यकारी का संधलन
- (3) गियरों का संलग्न
- (4) क्लच का प्रचालन

98 Synchromesh unit in gear box facilitate -

- (1) To reduce the speed of the meshing gear in comparison to lay shaft as the gear is engaged.
- (2) To reduce the speed of the meshing gear in comparison to main shaft as the gear is engaged.
- (3) To match the speed of the meshing gear to that of lay shaft as the gear is engaged.
- (4) To match the speed of the meshing gear to the that of main shaft as the gear engaged.

गियर बॉक्स में सिंक्रोमेश इकाई सुगमता प्रदान कराती है -

- (1) जब गियर संलग्न होते है तब, संलग्न हो रहे गियरों की गति प्रति शाफ्ट की तुलना में घटाने हेतु
- (2) जब गियर संलग्न होते है तब, संलग्न हो रहे गियरों की गति मुख्य शाफ्ट की तुलना में घटाने हेतु
- (3) जब गियर संलग्न होते है तब, संलग्न हो रहे गियरों की गित प्रति शाफ्ट से मेल कराने हेतु
- (4) जब गियर संलग्न होते है तब, संलग्न हो रहे गियरों की गति मुख्य शाफ्ट से मेल कराने हेतु

99 Which part of the automobile tyre is subjected to greatest flexing action?

(1) Bead

(2) Shoulder

(3) Tread

(4) Side wall

ऑटोमोबाइल टायर का कौनसा भाग सबसे अधिक लचक प्रभाव वहन करता है ?

(1) बीड

(2) शोल्डर

(3) ट्रीड

(4) पार्श्व भित्ति

100 Clausius inequality is -

$$(1) \quad \int \frac{dS}{T} \le 0$$

(2)
$$\int \frac{dS}{T} \ge 0$$

$$(3) \qquad \int \frac{dQ}{T} > 0$$

$$(4) \qquad \int \frac{dQ}{T} \le 0$$

क्लासियस असममितता क्या है ?

$$(1) \quad \int \frac{dS}{T} \le 0$$

$$(2) \qquad \int \frac{dS}{T} \ge 0$$

$$(3) \quad \int \frac{dQ}{T} > 0$$

$$(4) \quad \int \frac{dQ}{T} \le 0$$

