

्रप्रश्न पुस्तिका / QUESTION BOOKLET

विषय / Subject : Physics

Paper-II

कोड / Code : 52

पुरितका में पृष्ठों की संख्या /

Number of Pages in Booklet: 64

पुस्तिका में प्रश्नों की संख्या /

Number of Questions in Booklet: 150

5200005

52 Physics बिषय कोड कि बुकलेट सीरीज

समय / Time : 3.00 घंटे / Hours

पूर्णांक / Maximum Marks: 300

INSTRUCTIONS

1. Answer all questions.

2. All questions carry equal marks.

3. Only one answer is to be given for each question.

if more than one answers are merked, it would be treated as wrong answer.
 Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.

t/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer
means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or
bubbles of any question blank will not be considered as wrong answer.)

7. The candidate should ensure that Series Code of the Question Paper Booklet and Answer Sheet must be same after opening the envelopes. In case they are different, a candidate must obtain another Question Paper of the same series. Candidate himself shall be responsible for ensuring this.

 Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable material with him/her will be strictly dealt as per rules.

9. Please correctly fill your Roll Number in O.M.R. Sheet. 5 marks will be deducted for filling wrong or

incomplete Roll Number.

10. If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorised material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted under Section 3 of the R.P.E. (Prevention of Unfairmeans) Act, 1992. Commission may also debar him/her permanently from all future examinations of the Commission.

सभी प्रश्नों के उत्तर दीजिए ।

2. सभी प्रश्नों के अंक समान हैं।

3. प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।

एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा ।

5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया हैं। अभ्यर्थी को सही उत्तर निर्दिध्य करते हुए उनमें से केवल एक गोले अथवा बवल को उत्तर-पत्रक पर नीते बॉल प्वाइंट पेन से महरा करना है।

6. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है। किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।

7. प्रश्न-पत्र पुस्तिका एवं उत्तर पत्रक के लिफाफे की सील खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुस्तिका पर वहीं सीरीज अंकित हैं जो उत्तर पत्रक पर अंकित है। इसमें कोई भिन्नता हो तो वीक्षक से प्रश्न-पत्र की ही सीरीज वाला दूसरा प्रश्न-पत्र का लिफाफा प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।

8. मोबाईल फोन अथवा इलेक्ट्रोनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित हैं। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।

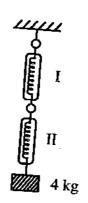
9. कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानी पूर्वक सही भरें। मलत अथवा अपूर्ण रोल नम्बर भरने पर 5. अंक कुल प्राप्तांकों में से अनिवार्य रूप से काटे जाएंगे।

10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की त्रुटि हो तो प्रश्न के हिन्दी तथा अंग्रेजी रूपान्तरों में से अंग्रेजी रूपान्तर मान्य होगा।

चेतावनी : अगर कोई अम्पर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, तो उस अम्पर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराई जायेगी और आर. पी. ई. (अनुचित साधनों की रोकथाम) अधिनियम, 1992 के नियम 3 के तहत कार्यवाही की जायेगी। साथ ही आयोग ऐसे अम्पर्थी को मविष्य में होने वाली आयोग की समस्त परीक्षाओं से विवर्जित

EB52 कर सकता है।

(1)	$ML^{-1}T^{-1}$	(2	MLT^{-1}	\\.
(3)	MLT^{-2}	(4)	$ML^{-1}T$	
बल	का विमीय सूत्र है :			
	$ML^{-1}T^{-1}$		MLT^{-1}	
(3)	<i>MLT</i> ⁻²	(4)	$ML^{-1}T$	
	percentage error in the espectively. Estimate r	measuremen	t of mass and sp or in kinetic ene	eed are 2% and
(1)	4%	(2)	8%	
(3)	11%	· (4)	6%	
द्रव्यमान् अधिकत	ा तथा बेग मापन में प्रति ाम त्रुटि ज्ञात कीजिए ।	शत त्रुटि क्रमश	ाः 2% व 3% है	। गतिज ऊर्जा में
(1)	1%	(2)	8%	
(3)		(4)		
Then in	5.0 m, its speed is 10 acceleration is:	ve x - direction m/s , 2.0 s	on with a constar	at acceleration. s at $x = 65 m$
(1) 10	$0 m/s^2$	(2)	$20 m/s^2$	
(3) 5			$15 m/s^2$	
एक कण इसकी चा है :	+ x दिशा में नियत त्व ल $10m/s$ है तथा 2.0	रण से गति व ऽ पश्चात् यह	र रहा है । यदि . x = 65 m पर है	x = 5.0 m पर । इसका त्वरण
(1) 10	m/s^2	(2) 2	$0 m/s^2$	
(3) 5 m	$1/s^2$	(4) 1:	$5 m/s^2$	
EB52_A J		2		[Contd

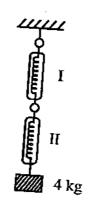

Dimensional formula for the force is :

1

5	the horizontal ra (1) 40 m (3) 19.2 m एक फुटबॉल खिलाड़ं से ठोकर मारता है की क्षैतिज परास है (1) 40 मी. (3) 19.2 मी.	ange of the ball is (given (2) (4) (4) (5) एक गेंद को क्षितिज से । यह मानते हुए कि गेंद (दिया हुआ है sin 37° (2) (4)	80 मी. 38.4 मी.
3		ce of two forces \overrightarrow{F} and ween the two forces is	$\stackrel{\rightarrow}{F}$ acting on a particle is $\stackrel{\rightarrow}{F}$,
	(1) 00	(2)	1200
	(3) 60°	(4)	900
. (किसी कण पर दो बत हो, तो दोनों बलों के (1) 0° 3) 60°	(2) 1	है तथा उनका परिणामी बल $\stackrel{ ightarrow}{F}$ $20^{ m o}$
_		· . · · · · · · · · · · · · · · · · · ·	
6 M	When two masses m	n_1 and m_2 are acted up	oon by the equal force F , the
. ra	tio $a_1: a_2$ of the	accelerations obtained	by the two masses is:
(1) $m_1 : m_2$	(2) m	
(3)) $m_1 m_2 : 1$	(4) 1:	$m_1 m_2$
জন্ত	ा दो संहतियों m ₁ व	Ma पर बगतर बच्च एः च	रा कार्य किया जाता है, तो दोनों
संह	तियों द्वारा प्राप्त त्वरण	z: राज्यस्य बल F हा गों का अनुपात $a_1:a_2$ है	स काय किया जाता है, तो दोनों : :
	$m_1 : m_2$	(2) m ₂	
(3)	$m_1 m_2 : 1$	(4) 1:n	_
EB52_A]	Ī	3	

[Contd...

7 The reading of two ideal spring balance I and II are respectively:


(1) 4 kg, 4 kg

(2) 8 kg, 4 kg

(3) 4 kg, 8 kg

(4) 4 kg, 16 kg

I व II आदर्श स्प्रिंग तुला के पाठ्यांक होंगे क्रमशः

(1) 4 kg, 4 kg

(2) 8 kg, 4 kg

(3) 4 kg, 8 kg

(4) 4 kg, 16 kg

- An automobile is moving along a road with speed ϑ_0 . If the coefficient of static friction between tyres and road is μ_s , what is the shortest distance in which the automobile can be stopped?
 - $(1) \quad \frac{\vartheta_0^2}{\mu_s g}$

 $(2) \quad \frac{\vartheta_0^2}{2\mu_s g}$

 $(3) \quad \frac{2\vartheta_0^2}{\mu_s g}$

 $(4) \quad \frac{\vartheta_0^2 g}{2\mu_S}$

एक वाहन सड़क पर ϑ_0 चाल से चल रहा है । यदि वाहन के टायर एवं सड़क में स्थैतिक घर्षण गुणांक $\mu_{_S}$ है, तो वह न्यूनतम दूरी जिसमें वाहन को रोका जा सकता है, होगी :

 $(1) \quad \frac{\vartheta_0^2}{\mu_s g}$

 $(2) \quad \frac{\vartheta_0^2}{2\mu_s g}$

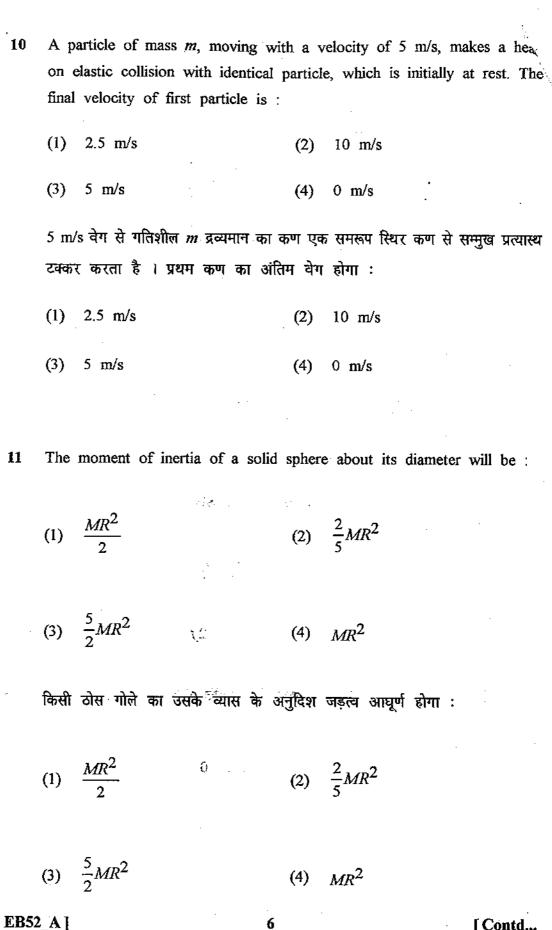
 $(3) \quad \frac{2\vartheta_0^2}{\mu_s g}$

- $(4) \quad \frac{\vartheta_0^2 g}{2\mu_g}$
- A spring when stretched by 2 cm, has potential energy U. If it is stretched by 10 cm, then the potential energy becomes:
 - (1) $\frac{U}{5}$

(2) 5 U

(3) $\frac{U}{25}$

(4) 25 *U*


एक स्प्रिंग को जब 2 cm खींचा जाता है तब उसकी स्थितिज ऊर्जा U है । यदि स्प्रिंग को 10 cm खींचा जाये तो उसकी स्थितिज ऊर्जा होगी :

(1) $\frac{U}{5}$

(2) 5 U

(3) $\frac{U}{25}$

(4) 25 *U*

Torque applied on a body and its rotational kinetic energy are expressed as following:

(1)
$$r \times F$$
, $(\frac{1}{2})Iv^2$

(2)
$$r \cdot F$$
, $\left(\frac{1}{2}\right) I v^2$

(3)
$$r \times F$$
, $(\frac{1}{2})I v^2/r^2$ (4) $r \cdot F$, $(\frac{1}{2})I v^2/r^2$

(4)
$$r \cdot F$$
, $\left(\frac{1}{2}\right)I v^2/r^2$

एक पिण्ड पर लगाए गए बल आधूर्ण और उसकी घूर्णन गतिज ऊर्जा निम्न प्रकार से व्यक्त किए जाते हैं:

(1)
$$r \times F$$
, $\left(\frac{1}{2}\right)Iv^2$

(2)
$$r \cdot F, \left(\frac{1}{2}\right) I v^2$$

(3)
$$r \times F$$
, $\left(\frac{1}{2}\right) I v^2/r^2$

(3)
$$r \times F$$
, $\left(\frac{1}{2}\right)Iv^2/r^2$ (4) $r \cdot F$, $\left(\frac{1}{2}\right)Iv^2/r^2$

If the frequency of a particle performing SHM is f, then frequency of its 13 kinetic energy is:

(1)
$$f$$

■ おおおおおおおおおおおおおおおおおおおおおおおおおおおおとして、 として、 このでは、 このでは、

(3)
$$\frac{f}{2}$$

(4)
$$2f$$

यदि सरल आवर्त गति कर रहे कण की आवृत्ति f है, तो इसकी गतिज ऊर्जा की आवृत्ति होगी :

(1)
$$f$$

$$(3) \quad \frac{f}{2}$$

(4)
$$2f$$

Which one of the following expression represents forced oscillator?

$$(1) \quad \frac{d^2y}{dt^2} + \omega^2 y = 0$$

$$(2) \quad \frac{d^2y}{dt^2} = 0$$

(3)
$$\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} + \omega^2 y = 0$$

(3)
$$\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} + \omega^2 y = 0$$
 (4) $\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} + \omega^2 y = F \sin pt$

निम्न में से कौन-सा व्यंजक प्रणोदित दोलक को दर्शाता है ?

$$(1) \quad \frac{d^2y}{dt^2} + \omega^2 y = 0$$

$$(2) \quad \frac{d^2y}{dt^2} = 0$$

(3)
$$\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} + \omega^2 y = 0$$

(3)
$$\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} + \omega^2 y = 0$$
 (4) $\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} + \omega^2 y = F \sin pt$

- Escape velocity from earth is 11.2 km/sec. Radius and mass of Mars are 15 about half and one tenth respectively of those of earth. The escape velocity from Mars would be:
 - (1)25 km/sec

(2) 2.2 km/sec

56 km/sec

5 km/sec

पृथ्वी से पलायन वेग 11.2 कि.मी./से. है । पृथ्वी की तुलना में मंगल ग्रह की त्रिज्या व संहति लगभग आधी व 1/10वीं हैं । मंगल ग्रह से पलायन वेग होगा :

(1) 25 कि.मी./से.

2.2 कि.मी./से.

56 कि.मी./से. (3)

(4) 5 कि.मी./से.

- Give the value of acceleration due to gravity at a height of R from earth surface. (R radius of earth) (\mathcal{S}_S acceleration due to gravity at surface of earth)
 - (1) g_s

(2) 0

 $(3) \quad \frac{g_s}{4}$

 $(4) \quad \frac{g_s}{2}$

पृथ्वी सतह से R ऊँचाई पर गुरुत्वीय त्वरण का मान दीजिए । (R — पृथ्वी की त्रिज्या, \mathcal{E}_S — पृथ्वी सतह पर गुरुत्वीय त्वरण)

(1) g_s

(2) 0

 $(3) \quad \frac{g_s}{4}$

- $(4) \quad \frac{g_s}{2}$
- 17 Consider a wire 2 meter long and of cross sectional area 1 mm². The work done for pulling the length of the wire by 0.1 mm is:

(given $Y = 2 \times 10^{11}$ Newton/m²)

(1) 0.5 Joule

- (2) 0.05 Joule
- (3) 5×10^{-3} Joule
- (4) 5×10^{-4} Joule

एक 2 मीटर लम्बे व 1 मि.मी. 2 अनुप्रस्थ काट क्षेत्रफल के तार की अवधारणा कीजिए । तार की लम्बाई को 0.1 मि.मी. खींचने में किया गया कार्य है :

(दिया है $Y = 2 \times 10^{11}$ न्यूटन/मी.²)

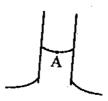
(1) 0.5 जूल

(2) 0.05 जूल

(3) 5×10⁻³ जूल

(4) 5×10⁻⁴ जूल

- The Young's modulus of a wire of length I and cross section A is Y. 18 length of wire is doubled and cross section is reduced to half then Young's modulus becomes : (1) 4 Y


(2)

(3) 2 Y

I लम्बाई तथा A काट क्षेत्र के तार का यंग प्रत्यास्थता गुणांक Y है । यदि तार की लम्बाई को दुगना तथा काट क्षेत्र आधा कर दिया जाए तो तार का यंग प्रत्यास्थता गुणांक हो जाएगा : (1) 4 Y

(3) 2 Y

- Figure shows a capillary dipped in water at one end. If atmospheric pressure 19 is P_a , what is the pressure at point A?

(1) P_a

 $(2) \quad P_a + \frac{2S}{r}$

(3) $P_a - \frac{2S}{r}$

 $(4) \quad P_a = \frac{4S}{r}$

चित्र में एक केशनली पानी में एक सिरे से डूबी दिखायी गयी है । यदि P_a वायुमंडल का दाब है, तो बिन्दु A पर दाब कितना होगा ?

(1) P_a

(2) $P_a + \frac{2S}{r}$

 $(3) \quad P_a - \frac{2S}{r}$

 $(4) \quad P_a - \frac{4S}{r}$

- Given that the density of ice is 0.92 gm/cm³ and that of sea water is 1.03 gm/cm³, the percent fraction of the total volume of ice above sea water is:
 - (1) 11%

(2) 89%

(3) 8%

(4) 92%

दिया हुआ है कि बर्फ़ का घनत्व 0.92 ग्राम/से.मी.³ और समुद्री पानी का घनत्व 1.03 ग्राम/से.मी.³ है, तो समुद्री पानी से बाहर बर्फ़ का अंश उसके कुल आयतन का प्रतिशत है :

(1) 11%

(2) 89%

(3) 8%

- (4) 92%
- Water is flowing through a horizontal pipe of non uniform cross section. At the extreme narrow portion of pipe, the water will have:
 - (1) maximum speed and least pressure
 - (2) least speed and maximum pressure
 - (3) least speed and least pressure
 - (4) maximum speed and maximum pressure

पानी, एक असमान काट क्षेत्र के क्षैतिज पाइप में से बह रहा है । पाइप के सबसे संकड़े भाग में पानी बहेगा :

- (1) अधिकतम चाल एवं न्यूनतम दाब से
- (2) न्यूनतम चाल एवं अधिकतम दाब से
- (3) न्यूनतम चाल एवं न्यूनतम दाब से
- (4) अधिकतम चाल एवं अधिकतम दाब से
- 22 The formula of Reynolds number is:

(1)
$$\operatorname{Re} = \frac{\rho v \eta}{d}$$

(2)
$$Re = \frac{\rho \eta d}{v}$$

(3)
$$\operatorname{Re} = \frac{\rho v d}{\eta}$$

(4) Re =
$$\frac{v\eta d}{\rho}$$

रेनल्ड्स संख्या का सूत्र है :

(1) Re =
$$\frac{\rho v \eta}{d}$$

(2)
$$Re = \frac{\rho \eta d}{v}$$

(3)
$$\operatorname{Re} = \frac{\rho v d}{\eta}$$

(4) Re =
$$\frac{v\eta d}{\rho}$$

of a free	o law of equipartition of energy, the average translational energy
(I) kT	(2) kT/3
(3) kT/2	(4) 3kT/2
ऊष्मा के सम ऊर्जा है :	विभाजन के नियम के अनुसार एक स्वतंत्र कण की औसत स्थानान्तरित
(1) kT	(2) kT/3
(3) kT/2	(4) 3kT/2
24 For a perfec	monoatomic gas, specific heat at constant volume is :
(1) R/2	(2) R
(3) 3R/2	(4) 2R
एक परिपूर्ण इव	−परमाण्विक गैस के लिए नियत आयतन पर विशिष्ट ऊष्मा है :
(1) R/2	(2) R
(3) 3R/2	(4) 2R
and does 20 J	os 35 J of heat and in the process it does 11 J of work. ows a different thermodynamic path to the same final state of work, the heat absorbed in the process is:
(1) 65 J	(2) 44 Ј
(3) 46 J	(4) 31 J
	प 35 J ऊष्मा अवशोषित कर 11 J कार्य करता है । जब निकाय एक अन्य ऊष्मागतिकी प्रक्रम से प्राप्त करता है तो 20 J कार्य काय द्वारा अवशोषित ऊष्मा है :
(1) 65 J	(2) 44 J
(3) 46 J	(4) 31 J
EB52_A]	12 [Contd

26	Efficiency of Carr and 100°C respec	not engine working be ctively is about:	tween a sink and a source at 27°C
	(1) 1/4	(2)	3/4
	(3) 1/5	(4)	4/5
	क्रमशः 27°C एवम् वाले एक कार्न् इंजन	100°C पर एक ऊष्मा ह ा की दक्षता लगभग है	ौज व स्रोत हैं जिनके मध्य काम करने :
	(1) 1/4	(2)	3/4
	(3) 1/5	(4)	4/5
27	An object is cooled to cool the same	f from 70°C to 65°C object to cool from	in 5 min in room. The time taken 65°C to 60°C will be:
	(1) more than 5	min (2)	less than 5 min
	(3) equal to 5 n	in (4)	none of above
	एक कमरे में एक वस को 65°C से 60°C	तु 70°C से 65°C तक तक ठण्डा होने में लगा	5 min में ठण्डी होती है । इसी वस्तु समय होगा :
	(1) 5 min से अधि	কে (2)	5 min से कम
	(3) 5 min ही	(4)	उपरोक्त में से कोई नहीं
28	The sound waves of following frequency	of frequencies 250 Hz	and 252 Hz produce a beat of
	(1) 1 Hz	(2)	2 Hz
	(3) 251 Hz	(4)	250/252 Hz
	250 हर्ट्ज़ एवम् 252 ह करती हैं :	हर्ट्ज आवृत्तियों की ध्वनि	तरंगें निम्न आवृत्ति का विस्पंद उत्पन्न
	(1) 1 हर्ज	(2)	2 हर्ज
	(3) 251 हर्ट्ज	(4)	250/252 हर्ट्ज
EB52	P_A]	13	ſ Contd

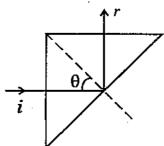
[Contd...

- An observer is moving with $\frac{1}{5}$ velocity of sound towards stationary source. The apparent frequency is how much more in percentage from real frequency?
 - (1) 10%

(2) 20%

(3) 30%

(4) 40%

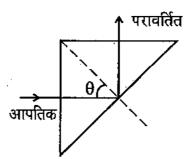

एक प्रेक्षक एक स्थिर ध्विन स्रोत की ओर ध्विन के $\frac{1}{5}$ – वेग से गतिशील है । प्रेक्षित आवृत्ति वास्तिवक आवृत्ति से कितने प्रतिशत अधिक होगी ?

(1) 10%

(2) 20%

(3) 30%

- (4) 40%
- A ray of light incident normal to one face of a prism is totally reflected. If $\theta = 60^{\circ}$, the index of refraction of the glass with respect to air is:


(1) only $\frac{\sqrt{3}}{2}$

 $(2) \geq \frac{\sqrt{3}}{2}$

(3) only $\frac{2}{\sqrt{3}}$

 $(4) \geq \frac{2}{\sqrt{3}}$

एक प्रिज्म के एक फलक पर लम्बवत् आपितत एक प्रकाश की किरण पूर्णतः परावर्तित हो जाती है । यदि $\theta=60^{\circ}$ हो, तो ग्लास का हवा के सापेक्ष अपवर्तनांक है :

(1) केवल $\frac{\sqrt{3}}{2}$

 $(2) \geq \frac{\sqrt{3}}{2}$

(3) केवल $\frac{2}{\sqrt{3}}$

 $(4) \geq \frac{2}{\sqrt{5}}$

EB52_A]

14

[Contd...

31

The state of the s

A converging lens of focal length 10.0 cm is placed in contact with a diverging lens of focal length 5.0 cm. The power of combination is:

(1) -10D

(2) +10D

(3) +20D

(4) -20D

10.0 cm फोकस दूरी का एक अभिसारी लैंस 5.0 cm फोकस दूरी के अपसारी लैंस के सम्पर्क में रखा है । संयोजन की शक्ति है :

(1) -10D

(2) +10D

(3) +20D

(4) -20D

32 In a compound microscope the image produced by the objective is :

- (1) real, enlarged and erect
 - (2) real, enlarged and inverted
- (3) virtual, enlarged and erect
- (4) virtual, enlarged and inverted

संयुक्त सूक्ष्मदर्शी में अभिदृश्यक द्वारा बनने वाला प्रतिबिंब होता है :

- (1) वास्तविक, आवर्धित तथा सीधा
- (2) वास्तविक, आवर्धित तथा उल्टा
- (3) आभासी, आवर्धित तथा सीधा
- (4) आमासी, आवर्धित तथा उल्टा

33 The inward and outward electric field flux for a closed surface are respectively 8×10^3 and 4×10^3 Nm²/c. Then the net charge inside the surface is :

(1)
$$+\frac{4\times10^3}{\varepsilon_0}C$$

(2)
$$+4 \times 10^3 \varepsilon_0 C$$

(3)
$$-4 \times 10^3 \varepsilon_0 C$$

$$(4) \quad -\frac{4\times10^3}{\varepsilon_0}C$$

एक बन्द सतह के अन्दर की ओर तथा बाहर की ओर का विद्युत फ्लक्स क्रमशः $8 imes 10^3$ तथा $4 imes 10^3$ Nm^2/c है । सतह के अन्दर नेट आवेश है :

$$(1) \quad + \frac{4 \times 10^3}{\varepsilon_0} C$$

(2)
$$+4 \times 10^3 \varepsilon_0 C$$

(3)
$$-4 \times 10^3 \varepsilon_0 C$$

$$(4) \quad -\frac{4\times10^3}{\varepsilon_0}C$$

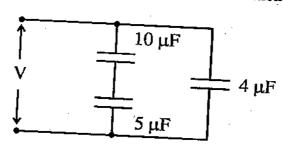
			* *
34 Magnitude of	electric field at a	point inside a sphere	e with sohes
distribution of	charges is proporti	ona to :	bpilot)
(1) r	·	(2) 1/r	
(3) 1/r ²		(4) 1/r ³	
where r is the	distance of the poi	nt of observation from	a tha
आवेशों के गोलीय	वितरण वाले एक मोः		i the centre.
परिमाण निम्न के	समानुपाती है :	ले के अन्दर किसी बिन्दु प	ार विद्युत क्षेत्र क
(1) r		(2) 1/r	• .
(3) 1/r ²	•	(4) 1/r ³	
जहाँ r प्रेक्षण बिन्ट	की केन्द्र से दूरी है		
	मा भाग्न स दूरा ह		·
(1) _{2E}	on equitorial line w	2). $\frac{E}{2}$	
	(2	·
(3) E	(4	4) $\frac{E}{4}$	
दिए गए द्विध्वव के र का परिमाण E है तो पर विद्युत क्षेत्र का प	इसा द्विध्रुव के कारण (X दूरी पर स्थित बिन्दु प	पर विद्युत क्षेत्र पर स्थित बिन्दु
(1) _{2E}	(2)	$\frac{E}{2}$	
(3) E	(4)	$\frac{E}{4}$	
B52_A]	16		[Centd '

- The capacitance of a parallel plate capacitor with air between the plates, is 8 pF. If the distance between the plates is reduced to half, and the space between them is filled with dielectric of dielectric constants 6. Then new
 - (1) 24 pF

(2) 96 pF

(3) $\frac{.2}{3} pF$

(4) 192 pF

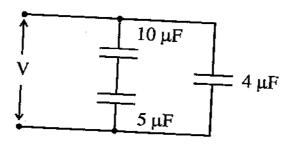

एक समान्तर प्लेट संधारित्र, जिसकी प्लेटों के मध्य हवा है, की धारिता 8 pF है। यदि इस संधारित्र की प्लेटों के मध्य की दूरी को आधा कर उनके मध्य के स्थान को परावैद्युतांक 6 के परावैद्युत को भरा जाए तो नई धारिता होगी :

(1) 24 pF

96 *pF*

(3) $\frac{2}{3}pF$

- (4) 192 pF
- Equivalent capacitance of the following combination is: 37


 $7.3~\mu F$ (1)

(2) $3.2\,\mu F$

(3) $19 \mu F$

(4) $1.8 \mu F$

निम्न समूह की तुल्य धारिता है :

(1) $7.3 \mu F$

(2) $3.2 \mu F$

(3) $19 \mu F$

(4) $1.8 \, \mu F$

			•						N. C.
38	end wher	resistar he new	nce X is b	ent null palanced agof null poi	ainst	another	resistance	Y > X). What
	(1) 40	cm			(2)	05 cm			
	(3) 80	cm			(4)	50 cm		-	
	_	•		तिरोध अन्य					
				म्बाई 20 c					
•	<i>Y</i> प्रतिरोध	से संतुरि	क्त किया ज	ता है तो इ	इसी रि	क्षरे से नई	संतुलन ल	म्बाई क्य	। होगी ?
	(1) 40	cm		•	(2)	05 cm	L		
	(3) 80	cm			(4)	50 cm			
	then the (1) 36 (2) 36 (3) 36 (4) No 収储 िकस्प्रितरोध (1) 3 (2) 3	e resistant 5×10^4 5×10^4 5×10^4 one of an interpolation in the interpolatio	ohm and ohm and ohm and above sa पर चा होगा : ओम तथा	5% tolere 10% toler 20% toler र रंग क्रमः 5% सहयत्	ence rence rence शः न				
			आम तथा से कोई	20% सहर नहीं	यता				
ויאַן	(4) 6 B52 A l		// 444	18	3				[Contd
21,2	a.J. (70. [~~~					

18

EB52_A]

A charged particle of mass m and charge q enters in a magnetic field with initial speed ϑ . If the direction of magnetic field makes ϑ angle with velocity of charge particle. Then speed of particle when it come out from magnetic field will be : (1)more than v (2)

- less than v

(4) zero

m द्रव्यमान तथा q आवेश का आवेशित कण एक चुम्बकीय क्षेत्र में प्रारम्भिक वेग ϑ से प्रवेश करता है । यदि कण के वेग तथा चुम्बकीय क्षेत्र के मध्य कोण θ है, तो चुम्बकीय क्षेत्र से बाहर निकले पर कण की चाल होगी:

(1) **ै से अधिक**

(2)

ी से कम (3)

(4) श्रुन्य

The temperature of transition from ferromagnetic to paramagnetic is called: 41

- (1)critical temperature
- (2) absolute temperature
- (3) curie temperature
- (4) melting temperature

वह ताप जिस पर कोई लौह चुम्बक, अनुचुम्बक बन जाता है :

(1)क्रांतिक ताप (2)परम ताप

(3) क्यूरी ताप

(4) गलन ताप

Consider a long and thin straight wire carrying a current I. Magnetic field 42 at a point (not along the length of the wire) at a distance r from the wire is proportional to :

(1)

(3)I/r

धारा I बहाते हुए एक लम्बे और पतले तार की अवधारणा कीजिए । एक बिन्दु पर (जो तार की लम्बाई के अनुदिश न हो) जो तार से r दूरी पर हो, चुम्बकीय क्षेत्र निम्न के समानुपाती है :

(1) Ir

(2)

(3)I/r

(4) I/r^2

EB52_A]

43	100 turns of conners : ()
	100 turns of copper wire (which is coated with an insulator) are wrapped
	around iron cylinder of cross social to a second are wrapped
	around iron cylinder of cross sectional area 0.001 meter ² and are connected
	to a resistor. Total resistance of the circuit is 10Ω . If the longitudinal
	resistance of the circuit is 10Ω . If the longitudinal
	magnetic induction in the iron changes from 1 weber/meter ² in one direction
	the field changes from I weber/meter ² in one direction
	to I weber/meter in the opposite direction, the arms of the direction
	to I weber/meter ² in the opposite direction, the amount of charge that flows
	through the circuit is:

(1) 2×10^{-4} Coulomb

(2) 2×10^{-2} Coulomb

(3) 10^{-4} Coulomb

(4) 10^{-2} Coulomb

तांबे के तार (कुचालक का लेप किए हुए) के 100 घुमाव एक $0.001~\text{H}^2$ अनुप्रस्थ काट क्षेत्रफल के लोहे के बेलन पर लपेटे गए हैं और इसे एक प्रतिरोध से जोड़ा गया है । परिपथ का कुल प्रतिरोध 10Ω है । यदि लोहे में अनुदैर्घ्य चुम्बकीय प्रेरण एक दिशा में $1~\text{वेबर/H}^2$ से विपरीत दिशा में $1~\text{वेबर/H}^2$ बदलता है तो परिपथ में जो आवेश बहता है उसकी मात्रा है :

(1) 2×10^{-4} कूलाम्ब

(2) 2×10^{-2} कूलाम्ब

(3) 10⁻⁴ कूलाम्ब

 $(4) 10^{-2}$ कूलाम्ब

44 In an AC circuit, a source of rms value 220 V is connected. The circuit components should be capable of tolerating the voltage of:

(1) 220 V

(2) 110 V

(3) 155.6 V

(4) 311.1 V

एक प्रत्यावर्ती धारा परिषथ में 220 V वर्ग-माध्य मूल मान का स्रोत जोड़ा गया है। परिषथ के अवयव निम्न वोल्टता सहन करने में सक्षम होने चाहिए :

(1) 220 V

(2) 110 V

(3) 155.6 V

(4) 311.1 V

- 45 In a LCR circuit capacitance is changed from C to 4C. For the resonant frequency to remain unchanged, the inductance should be changed from L to :
 - (1) $\frac{L}{2}$

(2) 4L

(3) 2 L

 $(4) \quad \frac{L}{4}$

LCR परिपथ में C धारिता के संधारित्र को 4C धारिता के संधारित्र से बदल दे तो अनुनाद आवृत्ति अपरिवर्तित रखने के लिए स्वप्रेरकत्व का मान L से कितना बदलना होगा ?

(1) $\frac{L}{2}$

(2) 4 L

(3) 2*L*

- (4) $\frac{L}{4}$
- Two polarizing sheets have their polarizing directions parallel and as a result the intensity of the transmitted light is a maximum. One of the sheets is rotated in such a way that the intensity drops to half. Which of the followings is the correct angle of rotation?
 - (1) 90°

(2) 60°

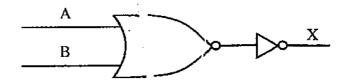
(3) 45°

(4) 30°

दो ध्रुवण शीटों (sheets) की ध्रुवण दिशाएँ समानान्तर हैं और परिणामस्वरूप निगर्त प्रकाश की तीव्रता अधिकतम है । एक शीट को इस प्रकार घुमाया जाता है कि तीव्रता आधी रह जाती है । निम्न में से कौनसा सही घुमाव कोण होगा ?

(1) 90°

(2) 60°

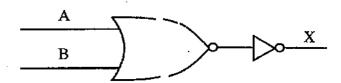

(3) 45°

(4) 30°

47	ngitt of wavelength 60	unm is used. If the	are observed on a screen when ne wavelength of light is changed on the same screen will be							
	(1) 15	(2)	20							
	(3) 10	(4)								
	व्यतिकरण प्रयोग में 600 होती है । यदि 400 nm र फ्रिन्जें प्राप्त होगी ?	nm का प्रकाश प्रयुव	त करने पर पर्दे पर 10 फ्रिन्जें प्राप्त या जाता है, तो उसी पर्दे पर कितनी							
	(1) 15	(2)	20							
	(3) 10	(4)								
48	The wavelength of an	electron of energ	y 100 eV will be :							
	(1) $1.2 \stackrel{\circ}{A}$	(2)	10 Å							
	$(3) 100 \stackrel{\circ}{A}$	(4)	0 1 4							
	100 eV ऊर्जा वाले एक									
	(1) $1.2 \stackrel{\circ}{A}$.	(2)	10 Å							
	(3) $100 \stackrel{\circ}{A}$	(4)	$1\overset{\circ}{A}$							
49	are obtained. If red light (1) less electrons will	illuminated with out is made incident be emitted.	•							
		will be chilt.								
	(4) no electrons will be									
	जब किसी धातु पर नीला प्रव	ाश आपतित किया र र नारंगी प्रकाश आप	जाता है तो फोटो इलेक्ट्रान उत्सर्जित तित किया जाता है तो कोई इलेक्ट्रान काश आपतित करने पर :							
	(1) कम इलेक्ट्रान उत्सर्जित									
	(2) कम ऊर्जा के इलेक्ट्रान	। उत्सर्जित होंगे ।	•							
	(3) अधिक इलेक्ट्रान उत्सवि									
	(4) कोई इलेक्ट्रान उत्सर्जित	नहीं होगा ।								
EB52	_A J	22	[Contd							

50	T 7 1		c			4: 1 . 4			2 11				
50		ime c A ^{1/3}		nucieus	is propo					wing	:		
	` '						•	A^{2} A^{3}					
	(3)		द नदा	आयत्न	निम्न वेऽ		•						
	(1)	A ^{1/3}		ખાવલગ	: יייייייייייייייייייייייייייייייייייי			φ·	3				
						•	•	A ³	-				
	(3)	A				γ.	"	A				•	
51				gets co	onverted i	mto { 12/12	Bı	i, the	n th	e nun	nber (of en	iitted α
	(1)	4α	and	1β		. (2)	2α	and	Ι 2β			
	(3)	4α	and	2β		· (4)	3α	and	2β			
		228 ₇ 90 ाहोगी		²¹² 8i	में परिवर्ग	र्तेत होता	है ,	, तो	उत्सरि	र्जित c	८ व	βव	हणों की
	(1)	4α	तथा	1β		(2)	2α	तथा	2β			
	(3)	4α	तथा	2β		(4)	3α	तथा	2/3			_
52	Shar	oe of	the		signal in	the fol		ving → V	;	'id be	1		·
	(1)		<u> </u>	<u>_</u>		(2)		<u></u>		_		
	(3)	一、	<u>_</u>	<u>_</u>		(4)	/	~ _		_		
	निम्न	में नि	नर्गत	सिग्नल	की प्रकृति	होगी :			٠				
				V _{निवि}	les 🗪	Ή−		—• ¹	^{\/`} निर्ग	त			
	(1)		<u> </u>	<u>_</u>		(2)				 ,		
	(3)	一、		<u></u>		(4)		<u>_</u>	<u>`</u> `~`			
EB5	2_A]					23						[4	Contd

53 The following combination of gates is equivalent to :


(1) NOT gate

(2) OR gate

(3) AND gate

(4) XOR gate

दिया गया द्वार संयोजन समतुल्य है

(1) NOT द्वार

(2) OR **夏**1र

 (4) XOR द्वार

A carrier wave of peak voltage 9 V is used to transmit a signal in AM. The peak voltage of the modulating signal in order to have modulation index of $\frac{2}{3}$ is:

(1) 6V

(2) 13.5V

(3) 12V

(4) 4.5V

9V शिखर मान की वाहक तरंग आयाम माङ्युलन में संकेत संचरण में उपयोग ली $\frac{2}{3}$ होने के लिए संकेत तरंग का शिखर मान होगा :

(1) 6V

(2) 13.5V

(3) 12V

(4) 4.5V

55 Electromagnetic waves are transverse in nature is evident by :

(1) polarization

(2) interference

(3) reflection

(4) diffraction

विद्युत चुम्बकीय तरंगों की प्रकृति अनुप्रस्थ होती है, यह सिद्ध किया जा सकता है:

(1) ध्रुवण से

(2) व्यतिकरण से

(3) परावर्तन से

(4) विवर्तन से

The pseudo force acting on a particle of mass m in non-inertial frame moving with acceleration a_0 is:

(1) ma_0

(2) $-ma_0$

(3) l, lg

(4) -mg

एक अजाइ ह्वीय फ्रेम a_0 त्वरण से गतिशील है । एक कण जिसका द्रव्यमान m हो तो उस भर लगने वाला आभासी बल होगा :

(1) ma_0

(2) $-ma_0$

(3) mg

(4) -mg

Consider two 1 rames of references XYZ and X'Y'Z'. The frame X'Y'Z' is moving with respect to frame XYZ with a velocity v in X-direction. The correct relations under Galilean transformation are:

(1)
$$x' = x - vt$$
, $y'' = y$, $z' = z$, $t' = t / \sqrt{1 - v^2/c^2}$

(2)
$$x' = x$$
, $y' = y - vt$, $z' = z - vt$, $t' = t$

(3)
$$x' = x + vt$$
, $y' = y'$, $z' = z$, $t' = t$

(4)
$$x' = x - vt$$
, $y'' = y v_0$ $z' = z_0$ $t' = t$

दो निर्देश तन्त्रों XYZ और X'Y'Z' की अवधारणा कीजिए । तन्त्र X'Y'Z' तन्त्र XYZ के सापेक्ष X-दिशा में वेग Y Y से गतिशील है । गैलीलियन रूपान्तरण के अन्तर्गत सही सम्बन्ध हैं :

(1)
$$x' = x - vt$$
, $y'' = y$, $z' = z$, $t' = t / \sqrt{1 - v^2 / c^2}$

(2)
$$x' = x$$
, $y' = y - vt$, $z' := z - vt$, $t' = t$

(3)
$$x' = x + vt$$
, $y' = y$, $z' = z$, $t' = t$

(4)
$$x' = x - vt$$
, $y' = y$, $z' = z$, $t' = t$

A particle falling vertically downward in northan hemisphere of ea rth wi 58 be displaced toward: Initially left then right (1) Right of its direction of motion (2) Left of its direction of motion does not displaced from path पृथ्वी के उत्तरी गोलार्द्ध में ऊर्ध्वाघर नीचे की ओर गिरते कण व ा विस्थापन होगा: प्रारम्भ में बाँयी ओर फिर दाँयी ओर इसकी गति की दाँयी ओर इसकी गति की बाँगी ओर (4) पथ से विस्थापित नहीं होगा Half life of π -meson at rest is 1.8×10^{-8} sec. Its half-life when it travels 59 with a speed c/2 will be: $1.56 \times 10^{-8} \,\mathrm{sec}$ (1) (2) 2.208×10^{-8} sec $3.6 \times 10^{-8} \text{sec}$ (3) $0.9 \times 10^{-8} sec$ (4) π – मेसॉन का विराम अवस्था में अर्ध-आर् $_{f}$ वज्ञाल 1.8×10^{-8} से. है । जब वह c/2 गति से गतिशील होता है रतब उसकी अर्ध-आयु होगी : 1.56×10^{−8} से. (1) 2.08_€×10⁻⁸ से. (2)

(3)

EB52_A]

3.6×10⁻⁸ ਜੋ.

(·4) 0.9×10⁻⁸ से.

60 Equation of motion for a rotating body is given as:

(1)
$$\tau = \frac{dL}{dt}$$

(2)
$$\tau = \frac{d\mathbf{r}}{dt} \times \frac{d\mathbf{p}}{dt}$$

(3)
$$\tau = p \times \frac{d\mathbf{r}}{dt}$$

(4)
$$\tau = r \cdot \frac{dp}{dt}$$

एक घूर्णन करते हुए पिण्ड का गति समीकरण है:

(1)
$$\tau = \frac{dL}{dt}$$

(2)
$$\tau = \frac{d\mathbf{r}}{dt} \times \frac{d\mathbf{p}}{dt}$$

(3)
$$\tau = p \times \frac{d\mathbf{r}}{dt}$$

$$(4) \quad \tau = r \cdot \frac{dp}{dt}$$

61 The energy loss in perfectly inelastic collision of two identical particles in laboratory frame of reference is:

(1) 100%

(2) 25%

(3) 75%

(4) 50%

प्रयोगशाला निर्देश तन्त्र में दो समस्तप कणों की पूर्णतः अप्रत्यास्थ टक्कर में ऊर्जा हानि होगी :

(1) 100%

(2) 25%

(3) 75%

(4) 50%

Displacement x of a lightly damped simple harmonic oscillator at time t is given by $x = ae^{-0.01t} \sin(4t)$

where a is a constant.

Quality factor of the system is:

(1) 400

(2) 200

(3) 0.005

(4) 0.025

एक कम विमंदित सरल आवर्ती दोलित्र के लिए समय t पर विस्थापन x है

$$x = ae^{-0.01t}\sin(4t)$$

जिसमें a एक नियतांक है ।

निकाय का गुणवत्ता गुणांक है :

(1) 400

(2) 200

(3) 0.005

(4) 0.025

- 63 For a driven oscillator maximum power absorption occurs when phase the force leads that of the displacement by following value:
 - (1) 0

(2) $\frac{\pi}{4}$

(3) $\frac{\pi}{2}$

(4) π

एक प्रेरित दोलित्र के लिए अधिकतम शक्ति अवशोषण होता है जब बल की कला विस्थापन से निम्न मान से आगे होती है :

(1) 0

(2) $\frac{\pi}{4}$

(3) $\frac{\pi}{2}$

(4) π

64 If wave velocity in water is $\sqrt{\frac{g\lambda}{2\pi}}$. Then group velocity of wave is:

(1) $\frac{2g}{\lambda}$

(2) $\sqrt{\frac{g\lambda}{8\pi}}$

(3) $\sqrt{\frac{g\lambda}{2\pi}}$

 $(4) \quad \frac{g\lambda}{2\pi}$

यदि पानी में तरंग वेग $\sqrt{\frac{g\lambda}{2\pi}}$ है तो तरंग का समूह वेग है :

(1) $\frac{2g}{\lambda}$

(2) $\sqrt{\frac{g\lambda}{8\pi}}$

(3) $\sqrt{\frac{g\lambda}{2\pi}}$

(4) $\frac{g\lambda}{2\pi}$

Taking force constant for CO bonds in CO_2 molecule to be 10^3 Newton/meter, the normal mode frequencies are

- (1) $3.6 \times 10^{13} Hz$, $6.9 \times 10^{13} Hz$
- (2) $3.1 \times 10^{13} Hz$, $6.9 \times 10^{13} Hz$
- (3) $3.6 \times 10^{13} Hz$, $5.9 \times 10^{13} Hz$
- (4) $3.1 \times 10^{13} Hz$, $5.9 \times 10^{13} Hz$

 ${
m CO_2}$ अणु में ${
m CO}$ बंधनों का बल नियतांक 10^3 न्यूटन/मीटर लेते हुए सामान्य (नॉर्मल) मोड आवृत्तियाँ हैं :

- (1) 3.6×10^{13} हर्ट्ज 6.9×10^{13} हर्ट्ज
- (2) 3.1×10^{13} हर्ट्ज 6.9×10^{13} हर्ट्ज
- (3) 3.6×10^{13} हर्ट्ज 5.9×10^{13} हर्ट्ज
- (4) 3.1×10^{13} हर्ट्ज 5.9×10^{13} हर्ट्ज

The ratio of speed of sound in Helium to speed in Hydrogen at same temperature is:

(1) $\sqrt{\frac{7}{6}}$

(2) $\sqrt{\frac{1}{2}}$

 $(3) \quad \frac{5}{\sqrt{21}}$

(4) $\frac{5}{\sqrt{42}}$

समान ताप पर हीलियम तथा हाइड्रोजन में ध्विन के वेग का अनुपात होगा :

(1) $\sqrt{\frac{7}{6}}$

(2) $\sqrt{\frac{1}{2}}$

 $(3) \quad \frac{5}{\sqrt{21}}$

(4) $\frac{5}{\sqrt{42}}$

- 67 Choose the correct statement:
 - (1) Low pitch sound is known as shrill sound.
 - (2) Pitch is not related to frequency of sound.
 - (3) High pitch sound is known as shrill sound.
 - (4) The pitch of lions roar is very high.

सही कथन का चयन कीजिए :

- (1) निम्न तारकत्व की ध्वनि को बारीक (shrill) ध्वनि कहते है ।
- (2) तारकत्व, ध्वनि की आवृत्ति से सम्बन्धित नहीं है ।
- (3) उच्च तारकत्व की ध्वनि को बारीक (shrill) ध्वनि कहते है ।
- (4) शेर की दहाड का तारकत्व बहुत ऊँचा होता है।
- 68 Energy of a sphere of radius R charged with total charge Q uniformly distributed throughout the volume is:

(1)
$$\left(\frac{3}{5}\right)\left(\frac{Q^2}{4\pi\epsilon_0 R}\right)$$
 (2) $\left(\frac{3}{5}\right)\left(\frac{Q}{4\pi\epsilon_0 R^2}\right)$

(3)
$$\left(\frac{3}{5}\right)\left(\frac{Q}{4\pi\epsilon_0 R^3}\right)$$
 (4) $\left(\frac{3}{5}\right)\left(\frac{Q^2}{4\pi\epsilon_0 R^3}\right)$

एकसमान रूप से पूरे आयतन में वितरित कुल आवेश Q से आवेशित R त्रिज्या के गोले की ऊर्जा है :

(1)
$$\left(\frac{3}{5}\right)\left(\frac{Q^2}{4\pi\epsilon_0 R}\right)$$
 (2) $\left(\frac{3}{5}\right)\left(\frac{Q}{4\pi\epsilon_0 R^2}\right)$

(3)
$$\left(\frac{3}{5}\right)\left(\frac{Q}{4\pi\epsilon_0 R^3}\right)$$
 (4) $\left(\frac{3}{5}\right)\left(\frac{Q^2}{4\pi\epsilon_0 R^3}\right)$

- The expression for classical radius of electron is given by $R = A \frac{ke^2}{mc^2}$ where value of A is:
 - (1) $\frac{2}{5}$

(2) $\frac{4}{5}$

(3) $\frac{3}{5}$

(4) $\frac{1}{5}$

इलेक्ट्रान की चिरसम्मत त्रिज्या का व्यंजक $R=A\frac{ke^2}{mc^2}$ से दिया जाता है । जहाँ A का मान है :

(1) $\frac{2}{5}$

The state of the s

(2) $\frac{4}{5}$

(3) $\frac{3}{5}$

- (4) $\frac{1}{5}$
- Atomic polarizability of hydrogen atom is found to be proportional to n^{th} power of its Bohr radius a_0 . Here n is:
 - (1) 1

(2) 3

(3) 2

(4) 4

हाइड्रोजन परमाणु की परमाण्विक ध्रुवता बोर त्रिज्या a_0 की nवीं घात के समानुपाती प्राप्त होती है । यहाँ n का मान है :

(1) 1

(2) 3

 $(3) \quad 2$

(4) 4

71 Poisson's equation is written as following:

(1)
$$\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} + \frac{\partial^2 E}{\partial z^2} = 0$$
 (2)
$$\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} + \frac{\partial^2 E}{\partial z^2} = -\frac{\rho}{\epsilon_0}$$

(3)
$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$
 (4)
$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\epsilon_0}$$

पॉइसां समीकरण निम्न प्रकार से लिखा जाता है :

(1)
$$\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} + \frac{\partial^2 E}{\partial z^2} = 0$$
 (2)
$$\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} + \frac{\partial^2 E}{\partial z^2} = -\frac{\rho}{\varepsilon_0}$$

(3)
$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$
 (4)
$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\epsilon_0}$$

Consider two parallel plates at a distance d from each other and charged at potentials V_1 and V_2 respectively. Electric field at a point between the plates at a distance d_1 from the first plate is:

(1)
$$-\frac{V_2 - V_1}{d}$$
 (2) $-\frac{V_2 - V_1}{d}d_1$

(3)
$$-\frac{V_2 - V_1}{d_1}$$
 (4) $-\frac{V_2 - V_1}{d_1}d$

आपस में एक d दूरी पर रखी और क्रमशः V_1 एवम् V_2 विभवों पर आवेशित को समानान्तर प्लेटों की अवधारणा कीजिए । प्लेटों के मध्य प्रथम प्लेट से d_1 दूरी पर एक बिन्दु पर विद्युत क्षेत्र है :

(1)
$$-\frac{V_2 - V_1}{d}$$
 (2) $-\frac{V_2 - V_1}{d}d_1$

(3)
$$-\frac{V_2 - V_1}{d_1}$$
 (4) $-\frac{V_2 - V_1}{d_1}d$

- 73 The reciprocal of deflection sensitivity of Cathod Ray Oscilloscope (CRO) is known as:
 - (1) Current sensitivity
- (2) Deflection factor
- (3) Deflection difference
- (4) Deflection frequency

केथोड किरण दोलनदर्शी (CRO) की विक्षेप सुग्राहिता का व्युक्रम कहलाता है :

(1) धारा सुग्राहिता

(2) विक्षेप गुणक

(3) विक्षेप अन्तर

- (4) विक्षेप आवृत्ति
- 74 Choose the incorrect relation:

(1)
$$\left(\frac{\partial T}{\partial v}\right)_{S} = \left(\frac{\partial p}{\partial s}\right)_{V}$$

(2)
$$\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial v}{\partial s}\right)_{p}$$

(3)
$$\left(\frac{\partial T}{\partial p}\right)_{v} = \left(\frac{\partial v}{\partial s}\right)_{T}$$

(4)
$$\left(\frac{\partial T}{\partial v}\right)_p = -\left(\frac{\partial p}{\partial s}\right)_T$$

इनमें से गलत सम्बन्ध का चुनाव कीजिए :

(1)
$$\left(\frac{\partial T}{\partial v}\right)_{S} = \left(\frac{\partial p}{\partial s}\right)_{V}$$

(2)
$$\left(\frac{\partial T}{\partial p}\right)_{s} = \left(\frac{\partial v}{\partial s}\right)_{p}$$

(3)
$$\left(\frac{\partial T}{\partial p}\right)_{v} = \left(\frac{\partial v}{\partial s}\right)_{T}$$

(4)
$$\left(\frac{\partial T}{\partial v}\right)_p = -\left(\frac{\partial p}{\partial s}\right)_T$$

75 In a gas, according to Maxwell's speed wise distribution law, the root mean square speed of atoms is:

(1)
$$\vartheta_{rms} = \frac{3kT}{m}$$

(2)
$$\vartheta_{rms} = \sqrt{\frac{8kT}{m}}$$

(3)
$$\vartheta_{rms} = \sqrt{\frac{3kT}{m}}$$

(4)
$$\vartheta_{rms} = \sqrt{\frac{2kT}{m}}$$

मैक्सवेल के चाल वितरण नियमानुसार गैस के अणुओं की वर्ग माध्य मूल चाल होती है :

(1)
$$\vartheta_{rms} = \frac{3kT}{m}$$

(2)
$$\vartheta_{rms} = \sqrt{\frac{8kT}{m}}$$

(3)
$$\vartheta_{rms} = \sqrt{\frac{3kT}{m}}$$

(4)
$$\vartheta_{rms} = \sqrt{\frac{2kT}{m}}$$

The enthalpy of a gas before and after Joule Thomson expansion are 80 cal and 120 cal. If the enthalpy of emerging liquid is 60 cal, the coefficient of performance of regenerative cooling is:

(1)
$$\frac{2}{3}$$

(2)
$$\frac{1}{5}$$

(3)
$$\frac{1}{3}$$

(4)
$$\frac{1}{4}$$

जूल टामसन प्रसार से पूर्व तथा बाद में एक गैस की एन्थैल्पी क्रमशः 80 cal तथा 120 cal है । यदि निष्कासित द्रव्य की एन्थैल्पी 60 cal है तो पुनर्निवेशी शीतलन का निष्पादन गुणांक है :

(1)
$$\frac{2}{3}$$

(2)
$$\frac{1}{5}$$

(3)
$$\frac{1}{3}$$

(4)
$$\frac{1}{4}$$

- According to Nernst's theorem, value of entropy of a system at absolute zero temperature will:
 - (1) be zero
 - (2) be small positive
 - (3) be small negative
 - (4) depend upon the process followed for cooling

नर्स्ट के प्रमेय के अनुसार, परम शून्य ताप पर एक निकाय की एन्ट्रापी का मान होगा :

- (1) शून्य
- (2) छोटा धनात्मक
- (3) छोटा ऋणात्मक
- (4) शीतलन के लिए अपनायी गई विधि पर निर्भर होगा
- 78 Entropy and thermodynamic probability are related as :

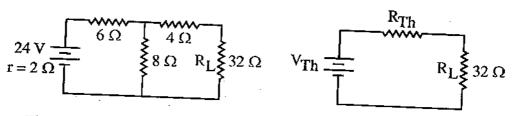
(1)
$$S = \left(\frac{1}{k}\right) \ln \Omega$$

(2)
$$S = \left(\frac{1}{k}\right) \log \Omega$$

(3)
$$S = k \ln \Omega$$

(4)
$$S = k \log \Omega$$

एन्ट्रापी और ऊष्मातापीय प्रायिकता निम्न प्रकार से सम्बन्धित हैं :


(1)
$$S = \left(\frac{1}{k}\right) \ln \Omega$$

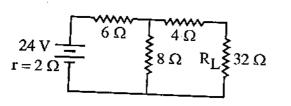
(2)
$$S = \left(\frac{1}{k}\right) \log \Omega$$

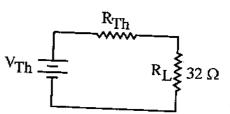
(3)
$$S = k \ln \Omega$$

(4)
$$S = k \log \Omega$$

- 79 According to fermi dirac or Bose einstein statistics, choose the correstatement
 - (1) α and 3He both are Boson.
 - (2) α and ${}^{3}He$ are Fermion.
 - (3) α particle is Fermion and 3He is Boson.
 - (4) α particle is Boson and 3He is Fermion. फर्मी डिराक एवं बोस आइन्सटीन सांख्यिकी के अनुसार, सही कथन को चुनिए :
 - (1) α तथा 3He दोनों बोसोन हैं ।
 - (2) α तथा ${}^{3}He$ दोनों फर्मियोन हैं ।
 - (3) α कण फर्मियोन है तथा 3He बोसोन हैं।
 - (4) α कण बोसोन है तथा 3He फर्मियोन हैं ।
- 80 In the figure below, a circuit and its Thevenin equivalent are shown.

The values of $V_{\emph{Th}}$ and $R_{\emph{Th}}$ are :


(1) 8V, 8Ω

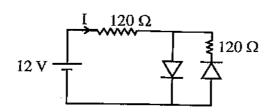

(2) $8V, 12\Omega$

(3) $12V, 8\Omega$

(4) $12V, 12\Omega$

नीचे दिये चित्र में एक परिषथ व उसका थेवेनिन तुल्य दिखाए गए हैं।

 V_{Th} और R_{Th} के मान हैं :

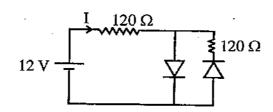

(1) 8V, 8Ω

(2) $8V, 12\Omega$

(3) $12V, 8\Omega$

(4) $12V, 12\Omega$

81 Find the value of current I in given circuit :


(1) 0 A

(2) 0.06 A

(3) 0.05 A

(4) 0.1 A

दिए गए परिपथ में धारा I का मान ज्ञात कीजिए :

(1) 0 A

(2) 0.06 A

(3) 0.05 A

(4) 0.1 A

82 The relation among transistor parameters α , β and γ is :

$$(1) \quad \beta = \frac{\alpha}{1 - \alpha} = \gamma - 1$$

$$(2) \quad \beta = \frac{\alpha}{1 - \alpha} = \gamma$$

(3)
$$\alpha = \frac{\beta}{1-\alpha} = \gamma + 1$$

$$(4) \quad \gamma = 1 - \alpha = \beta + 1$$

ट्रांजिस्टर पेरामीटर α, β और γ में सम्बन्ध है :

$$(1) \qquad \beta = \frac{\alpha}{1-\alpha} = \gamma - 1$$

$$(2) \quad \beta = \frac{\alpha}{1 - \alpha} = \gamma$$

(3)
$$\alpha = \frac{\beta}{1-\alpha} = \gamma + 1$$

$$(4) \quad \gamma = 1 - \alpha = \beta + 1$$

EB52_A]

- 83 The phase difference betwen input and output signal in common by
 - (1) 0

(2) $\frac{\pi}{4}$

 $(3) \frac{\pi}{2}$

(4) π

उभयनिष्ठ आधार विन्यास ट्रांजिस्टर प्रवर्धक के निवेशी तथा निर्गत संकेत में कलान्तर

(1). 0

(2) $\frac{\pi}{4}$

 $(3) \quad \frac{\pi}{2}$

(4) π

84 Negative feedback in an amplifier -

- (1) Increases the current gain
- (2) Decreases the stability
- (3) Decreases the input impedance
- (4) Increases the frequency bandwidth प्रवर्धक में ऋणात्मक पुनर्भरण —
- (1) धारा लब्धता बढ़ाता है
- (2) स्थायित्व घटाता है
- (3) निविष्ट प्रतिबाधा घटाता है
- (4) आवृत्ति बन्ध्य चौड़ाई बढ़ाता है

The condition for stable oscillations of Hartley oscillator is:

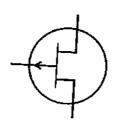
$$(1) \quad h_{fe} = L_1 + M$$

$$(2) \quad h_{fe} = L_2 + M$$

(3)
$$h_{fe} = \frac{L_1 + M}{L_2 + M}$$

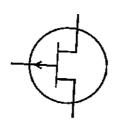
(4)
$$h_{fe} = L_1 + L_2 + 2M$$

हार्टले दोलित्र के स्थायी दोलनों के लिये शर्त है कि :


$$(1) h_{fe} = L_1 + M$$

$$(2) h_{fe} = L_2 + M$$

(3)
$$h_{fe} = \frac{L_1 + M}{L_2 + M}$$


(4)
$$h_{fe} = L_1 + L_2 + 2M$$

86 The given figure is schematic symbol of:

- (1) p channel JFET
- (2) n channel JFET
- (3) p channel MOSFET
- (4) n channel MOSFET

दिया गया चित्र प्रतीक चिन्ह है:

(1) p चैनल JFET

- (2) n चैनल JFET
- (3) p चैनल MOSFET
- (4) n चैनल MOSFET

				No. of the control of
87	dia	wton's rings are observed between meters of 9 th and 14 th rings are 3 the 4 th ring is :	en a o	convex lens and a plane plate. The aid 3.78 units respectively. Diamete
	(1)	2.90	(2)	2.96
	(3)	1.66	(4)	7.40
	एक	संघनित्र लेन्स और समतल प्लेट वे	वीच	न्यूटन के छल्ले (रिन्ग्स) दिखते हैं
		·		.37 व 3.78 इकाई हैं । चतुर्थ छल्ले
		व्यास होगा :		
	(1)	2.90	(2)	2.96
	(3)	1.66	(4)	7.40
88	The	path difference between two int	erferin	ng light waves at a point on screen
	is $\frac{\lambda}{4}$	The ratio of intensity at the	is poi	nt and that at the central fringe
	will	be:		
	(1)	1	(2)	$\frac{3}{4}$
	(3)	1 4	(4)	$\frac{1}{2}$
	पर्दे वे	b एक बिन्दु पर व्यतिकरण करती	दो प्रव	ज्ञाश तरंगों के मध्य पथान्तर $rac{\lambda}{4}$ है।
	इस वि	बेन्दु पर तीव्रता तथा केन्द्रीय फ्रिन्ज	कीत	तीव्रता का अनुपात है :
	(1)	1	(2)	$\frac{3}{4}$
	(3)	$\frac{1}{4}$	(4)	$\frac{1}{2}$

89 The formula of area of half period of zone is:

(1) $\frac{\pi b}{\lambda}$

(2) $\pi b \lambda$

(3) $\frac{\lambda}{\pi b}$

(4) $2\pi b\lambda$

अर्धकाल जोन के क्षेत्रफल का सूत्र है :

(1) $\frac{\pi b}{\lambda}$

(2) πbλ

(3) $\frac{\lambda}{\pi b}$

(4) $2\pi b\lambda$

90 How many lines per cm are there in a plane transmission grating which

gives first order line of wavelength $6000\,\mathring{A}$ at angle of 30° ?

- (1) 15000 per cm
- (2) 833300 per cm

(3) 8333 per cm

(4) 4117 per cm

उस समतल पारगमित ग्रेटिंग की प्रति सेमी लम्बाई में लाइनों की संख्या कितनी होगी,

कि जो $6000\,\mathring{A}$ प्रकाश की प्रथम कोटि रेखा 30° कोण पर देती है ?

- (1) 15000 प्रति सेमी
- (2) 833300 प्रति सेमी
- (3) 8333 प्रति सेमी
- (4) 4117 प्रति सेमी

91 The relation among coherence length L, speed of light C and coherence time τ is:

$$(1) L = \frac{C}{\tau}$$

(2)
$$L = \tau C$$

$$(3) L = \frac{\tau}{C}$$

$$(4) L = \frac{1}{\tau C}$$

कला सम्बन्ध लम्बाई L, प्रकाश की चाल C तथा कला सम्बन्ध समय $\mathfrak r$ में सम्बन्ध है :

$$(1) L = \frac{C}{\tau}$$

(2)
$$L = \tau C$$

$$(3) L = \frac{\tau}{C}$$

$$(4) L = \frac{1}{\tau C}$$

- The ratio of Einstein's coefficients $\frac{A_{nm}}{B_{nm}}$ is proportional to n^{th} power of v, here n is :
 - **(1)**

(3)

आइन्सटीन गुणांकों का अनुपात $\frac{A_{nm}}{B_{nm}}$, ν की nवीं घात के समानुपाती है,

यहाँ n है :

(3) 2

- The eigen value of energy of hydrogen atom is : 93
 - (1) $E_n = \frac{-2\pi^2 m e^4}{n^2 h^2 (4\pi \in \Omega)^2}$ (2) $E_n = \frac{-2\pi^2 m e^4}{n^2 h^2 (4\pi \in \Omega)}$
 - (3) $E_n = \frac{-\pi^2 m e^2}{nh^2 (4\pi \epsilon_0)}$ (4) $E_n = \frac{-2\pi^2 m e^2}{n^2 h^2 (4\pi \epsilon_0)}$

हाइड्रोजन परमाणु का ऊर्जा आइगन मान है :

- (1) $E_n = \frac{-2\pi^2 me^4}{n^2 h^2 (4\pi \in \Omega)^2}$ (2) $E_n = \frac{-2\pi^2 me^4}{n^2 h^2 (4\pi \in \Omega)}$
- (3) $E_n = \frac{-\pi^2 m e^2}{nh^2 (4\pi \in \Omega)}$
- (4) $E_n = \frac{-2\pi^2 m e^2}{n^2 h^2 \left(4\pi \in_0 \right)}$

- Choose the correct statement in conformity with Uncertainty principle:
 - (I)
- $\Delta x \cdot \Delta p_x \sim \hbar; \ \Delta x \cdot \Delta p_y = 0$ (2) $\Delta x \cdot \Delta p_x \sim \hbar; \ \Delta x \cdot \Delta p_y \sim \hbar$
- $\Delta y \cdot \Delta p_x = 0$; $\Delta y \cdot \Delta p_y = 0$ (4) $\Delta y \cdot \Delta p_x \sim \hbar$; $\Delta y \cdot \Delta p_y \sim \hbar$

अनिश्चितता के सिद्धांत के अनुरूप सही कथन चुनिए :

- $\Delta x \cdot \Delta p_x \sim \hbar$, $\Delta x \cdot \Delta p_y = 0$ (2) $\Delta x \cdot \Delta p_x \sim \hbar$, $\Delta x \cdot \Delta p_y \sim \hbar$
- (3)
- $\Delta y \cdot \Delta p_{\chi} = 0; \ \Delta y \cdot \Delta p_{y} = 0$ (4) $\Delta y \cdot \Delta p_{\chi} \sim \hbar; \ \Delta y \cdot \Delta p_{y} \sim \hbar$
- Number of spectral lines appearing in yellow region from a sodium lamp 95 placed in a weak magnetic field are :
 - (1)

(2)

(3)

(4) 10

एक दुर्बल चुम्बकीय क्षेत्र में रखे सोडियम लैम्प से पीले क्षेत्र (रीजन) में निकलने वाली रेखाओं की संख्या है :

(1) 2

(2)

(3) 6

- **(4)** 10
- Choose the incorrect relation in the following: 96
 - $(1) \quad \left[L_z, x \right] = i \hbar y$
- (2) $\left[L_{z}, y\right] = -i\hbar x$
- (3) $\left[L_z, z\right] = i \hbar z$
- (4) $\left[L_z, z\right] \approx 0$

निम्न में से गलत सम्बन्ध को चुनिए :

- (1) $\left[L_z, x\right] = i\hbar y$
- (2) $\left[L_z, y\right] = -i\hbar x$
- (3) $\left[L_z, z\right] = i\hbar z$
- (4) $\left[L_z, z\right] = 0$

- 97 The period of a linear harmonic oscillator is 1 s. Its zero point energy is:
 - (1) 0

(2) $6.6 \times 10^{-34} J$

(3) $3.3 \times 10^{-34} J$

(4) $3.3 \times 10^{-13} J$

रैखिक आवर्ती दोलित्र का आवर्तकाल 1 s है । इसकी शून्य बिन्दु ऊर्जा है :

(1) 0

(2) $6.6 \times 10^{-34} J$

(3) $3.3 \times 10^{-34} J$

- (4) $3.3 \times 10^{-13} J$
- 98 Separations between first three lines in the rotational spectrum of a CO like molecule are:
 - (1) 0, 2B, 4B

(2) 2B, 2B, 2B

(3) 2B, 4B, 6B

(4) 4B, 4B, 4B

B is rotational constant of the molecule.

- CO जैसे अणु के घूर्णन वर्णक्रम में प्रथम तीन रेखाओं के मध्य दूरियाँ क्रमशः है :
- (I) 0, 2B, 4B

(2) 2B, 2B, 2B

(3) 2B, 4B, 6B

(4) 4B, 4B, 4B

B अणु का घूर्णन नियतांक है ।

- 99 The parity of $3^{Li}^{7} \left(1p_{3/2}\right)$ and $7^{N^{15}} \left(1p_{1/2}\right)$ are respectively :
 - (1) 1, 1

(2) -1, -1

(3) 1, -1

(4) -1, 1

 $_3Li^7igg(1p_{3/2}igg)$ तथा $_7N^{15}igg(1p_{1/2}igg)$ की समता (पेरिटी) क्रमशः है :

(1) 1, 1

(2) -1, -1

(3) 1, -1

(4) -1, 1

- 100 Which one is not a property of nuclear forces?
 - (1) short range

- (2) charge independence
- (3) spin independence
- (4) exchange behaviour

नाभिकीय बल का गुण नहीं है -

(1) लघु परास

- (2) आवेश पर अनिर्भरता
- (3) चक्रण पर अनिर्भरता
- (4) विनिमय व्यवहार
- 101 Possible angular momentum quantum number of deuteron nucleus is :
 - (1) Only 0

- (2) Only 1
- (3) Either 1 or 0
- (4) Either 1 or -1

ड्यूट्रोन नाभिक की संभाविक कोणीय संवेग क्वान्टम संख्या है :

(1) केवल O

- (2) केवल 1
- (3) यातो 1 या 0
- (4) यातो 1 या -1
- 102 In liquid drop model for binding energy of nucleus, the term representing Coulomb energy is proportional to the following:
 - (1) $Z^{2}A^{-\frac{1}{3}}$

(2) $Z^2A^{\frac{1}{3}}$

(3) $ZA^{-\frac{2}{3}}$

(4) $ZA^{\frac{2}{3}}$

नाभिक की बंध्य ऊर्जा के लिए तरल ड्रॉप मॉडल में कूलाम्ब ऊर्जा को निरूपित करने वाला पद निम्न के समानुपाती है :

(1) $Z^{2}A^{-\frac{1}{3}}$

(2) $Z^2 A^{\frac{1}{3}}$

(3) $ZA^{-\frac{2}{3}}$

 $(4) \quad \frac{2}{ZA^3}$

103 In a cyclotron accelerator, the cyclotron condition is :

(1)
$$\omega = \frac{qB}{m}$$

$$(2) f = \frac{qB}{m}$$

(3)
$$\omega = \frac{qB}{2m}$$

$$(4) f = \frac{qB}{2m}$$

एक साइक्लोट्रान त्वरक में, साइक्लोट्रान प्रतिबंध है :

(1)
$$\omega = \frac{qB}{m}$$

$$(2) f = \frac{qB}{m}$$

(3)
$$\omega = \frac{qB}{2m}$$

$$(4) f = \frac{qB}{2m}$$

104 The efficiency of GM Counter is 90%. If it counts maximum 6000 counts per minute, calculate its paralysis time.

(1) 10 ms

(2) 1 ms

(3) 0.1 ms

(4) 0.01 ms

एक जी. एम. काउन्टर की दक्षता 90% है । यदि यह अधिकतम 6000 गणना प्रति मिनट करता है तो इसके पक्षाघात समय की गणना करो ।

(1) 10 ms

(2) 1 ms

(3) 0.1 ms

(4) 0.01 ms

105 Miller indices for a plane with intercepts 3a, 3b, 2c on chosen axes, are:

(1) (3,3,2)

 $(2) \quad \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}\right)$

(3) (2,2,3)

(4) (6,6,6)

एक समतल, जिसके चुने हुए अक्षों पर अन्तःखण्ड 3a, 3b, 2c हैं, के मिलर सूचकांक हैं:

(1) (3,3,2)

(2) $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}\right)$

(3) (2,2,3)

(4) (6,6,6)

EB52 A]

46

[Contd...

- At high temperature, according to Dulog and Petit's law, the molar specific heat of solid is proportional to
 - (1) T^3

(2) T^2

(3) T

(4) T^0

ड्युलाग तथा पेटिट के नियम के अनुसार उच्च ताप पर ठोसों की मोलर विशिष्ट ऊष्मा समानुपाती है :

(1) T^3

(2) T^2

(3) T

 $\mathcal{T}_{i}^{0} = \mathcal{T}_{i}^{0} + \mathcal{T}$

107 According to Kronig-Penney model, what will be the nature of graph between particle energy and k?

(1) linear

(2) parabolic

(3) exponential

(4) sinusoidal

क्रोनिग-पैनी मॉडल के अनुसार, कण की ऊर्जा E तथा k के मध्य खींचा गया वक्र होगा :

(1) रैखिक

(2) परवलय

(3) चरघातांकीय

(4) ज्यावक्रीय

108 E-k relation for a material is given as

$$E(k) = a_0 + bk + ck^2$$

Effective mass of the electron for this, is :

$$(1) \quad \frac{\hbar^2}{a_0}$$

$$(2) \quad \frac{\hbar^2}{(b+2c)}$$

$$(3) \quad \frac{\hbar^2}{2c}$$

$$(4) \quad \frac{\hbar^2}{2b}$$

किसी पदार्थ के लिए E-k संबंध है

$$E(k) = a_0 + bk + ck^2$$

इसके लिए इलेक्ट्रान का प्रभावी व्रव्यमान है :

$$(1) \quad \frac{\hbar^2}{a_0}$$

$$(2) \quad \frac{\hbar^2}{(b+2c)}$$

$$(3) \quad \frac{\hbar^2}{2c}$$

$$(4) \quad \frac{\hbar^2}{2\hbar}$$

109 Quantum of flux in a superconductor is :

(1) $\frac{hc}{e}$

(2) $\frac{hc}{2e}$

(3) $\frac{\hbar c}{e}$

(4) $\frac{\hbar c}{2e}$

एक अतिचालक में प्रवाह (फ्लक्स) का क्वान्टम है :

(1) $\frac{hc}{e}$

(2) $\frac{hc}{2e}$

(3) $\frac{\hbar c}{e}$

 $(4) \quad \frac{\hbar c}{2e}$

110 For a superconductor below critical temperature:

- (1) $\overrightarrow{E} = 0$ but $\overrightarrow{B} \neq 0$
- (2) $\overrightarrow{E} \neq 0$ but $\overrightarrow{B} = 0$
- (3) $\overset{\longrightarrow}{E} \neq 0$ and $\overset{\longrightarrow}{B} \neq 0$
- (4) $\overrightarrow{E} = 0$ and $\overrightarrow{B} = 0$

क्रान्तिक ताप के नीचे अतिचालक के लिए :

- (1) $\stackrel{\longrightarrow}{E} = 0$ and $\stackrel{\longrightarrow}{B} \neq 0$
- (2) $\stackrel{\longrightarrow}{E} \neq 0$ किन्तु $\stackrel{\longrightarrow}{B} = 0$
- (3) $\stackrel{\longrightarrow}{E} \neq 0$ तथा $\stackrel{\longrightarrow}{B} \neq 0$
- (4) $\stackrel{\longrightarrow}{E} = 0$ तथा $\stackrel{\longrightarrow}{B} = 0$

111 Hamilton's principle can be stated as following:

- $(1) \quad \delta \int (T V) dt = 0$
- (2) $\delta \int (2T-c)dt = 0$

 $(3) \quad \delta \int 2T \, dt = 0 .$

(4) all the three above

हैमिल्टन का सिद्धांत निम्न प्रकार से व्यक्त किया जा सकता है :

- $(1) \quad \delta \int (T V) dt = 0$
- (2) $\delta \int (2T-c)dt = 0$

 $(3) \quad \delta \int 2T \, dt = 0$

(4) ऊपर के तीनों ही

114 Gibbs paradox relates to:

- (1) change in temperature on mixing of two different gases
- (2) change in entropy on mixing of two different gases
- (3) change in temperature on mixing of two gases of the same kind
- (4) change in entropy on mixing of two gases of the same kind गिब्स विरोधाभास निम्न से सम्बन्धित है :
- दो भिन्न गैसों को मिलाने पर ताप में परिवर्तन
- (2) दो भिन्न गैसों को मिलाने पर एन्ट्रॉपी में परिवर्तन
- (3) एक ही तरह की दो गैसों को मिलाने पर ताप में परिवर्तन
- (4) एक ही तरह की दो गैसों को मिलाने पर एन्ट्रॉपी में परिवर्तन
- 115 For a boson gas at a temperature $T < T_B$, molar specific heat at constant volume is given by :
 - (1) $\frac{3U}{2T}$

(2) $\frac{5U}{2T}$

 $(3) \quad \frac{7U}{5T}$

 $(4) \quad \frac{5U}{3T}$

बोसोन गैस के लिए ताप $T < T_B$ पर नियत आयतन पर मोलर विशिष्ट ऊष्मा दी जाती है -

(1) $\frac{3U}{2T}$

(2) $\frac{5U}{2T}$

 $(3) \quad \frac{7U}{5T}$

 $(4) \quad \frac{5U}{3T}$

- 112 How many maximum number of independent components can a symmetric tensor of rank two have 'n' dimensional space?
 - (1) n^2

 $(2) \quad \frac{n(n+1)}{2}$

 $(3) \quad \frac{n(n-1)}{2}$

(4) 2n

'n' विमीय आकाश में रेंक 2 के समित स्वतन्त्र टेन्सर की अधिकतम संख्या हो सकती है –

(1). n^2

 $(2) \quad \frac{n(n+1)}{2}$

 $(3) \quad \frac{n(n-1)}{2}$

(4) 2n

113 Intensity of electromagnetic radiation from an oscillating electric dipole is:

- (1) maximum at the equatorial plane
- (2) maximum along the axis of the oscillating dipole
- (3) maximum at an angle of $\frac{\pi}{4}$ from the axis of the oscillating dipole
- (4) intensity is equal in all the directions

एक दोलनीकृत विद्युत द्विध्रुव से विद्युत चुम्बकीय विकिरण की तीव्रता :

- (1) इक्वेटोरियल समतल पर अधिकतम है
- (2) दोलनीकृत द्विध्रुव के अक्ष के अनुदिश अधिकतम है
- (3) दोलनीकृत द्विध्रुव के अक्ष से $\frac{\pi}{4}$ कोण पर अधिकतम है
- (4) सभी दिशाओं में तीव्रता बराबर है

- Application of WKB method to a particle in a bound state gives a quantization condition according to which value of $\int_a^b k(x)dx$ is (where a and b are turning points at which potential energy equals total energy of the particle)
- (1) $\left(n+\frac{1}{2}\right)\pi$

(2) $(n+1)\pi$

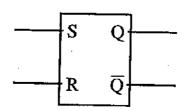
(3) $(2n+1)\pi$

(4) $(2n+1)\pi/2$

बंध्य अवस्था में एक कणिका पर WKB विधि लगाने से एक प्रतिबंध प्राप्त होता है

जिसके अनुसार $\int k(x)dx$ है (जहाँ a और b दिशा परिवर्तन बिन्दु है जिन पर विभव a

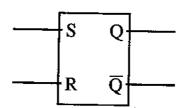
ऊर्जा कण की कुल ऊर्जा के बराबर होती है)


(1)
$$\left(n+\frac{1}{2}\right)\pi$$

(2)
$$(n+1)\pi$$

(3)
$$(2n+1)\pi$$

(4)
$$(2n+1)\pi/2$$


117 Given logic symbol represents

(1) $\vec{R} \vec{S}$ flip-flop

- (2) RS flip-flop
- (3) R-S clocked flip-flop
- (4) D flip flop

नीचे दिया गया तार्किक चिन्ह है -

- (1) $\vec{R} \vec{S}$ फिलप फ्लाप
- (2) RS फिलप फ्लाप
- (3) R S arm from Γ
- (4) *D* पिलप फ्लाप

				·
118	The input resistance and $3k\Omega$ and $12k\Omega$ respectively.	feedback r	esistance of an in	Werting amplifier
	$3k\Omega$ and $12k\Omega$ respectively:	tively. The	voltage gain and	output voltage ar
	(1) 4V, 5V			
	(3) 0.5 <i>V</i> , 2 <i>V</i>		(2) 4V, 2V	
			(4) 6V, 6V	
3	नेवेश प्रतिरोध और पुनःनिवि $3k\Omega$ तथा $12k\Omega$ है । ह	ष्ट प्रातसद्यः विकास - कि न	एक प्रतिलोमक एम्प्ली	ोफायर के लिए क्रमशः
($3k\Omega$ तथा $12k\Omega$ है । व			। क्रमशः होगी :
	3) 0.5 <i>V</i> , 2 <i>V</i>		(2) 4V, 2V	
	·, · · · · · · · · · · · · · · · · · ·	((4) 6V, 6V	
119 W	Which of the followings	ia :-		
(1	Which of the followings: No two electrons can	occurry and	ccordance with]	Pauli's principle ?
	No two electrons can numbers indentical			
(2	If orbital part of the the wavefunction is	wavefunct	ion is symmetric,	then spin part of
(3)) If orbital part of the	wavefuncti	On ic anticom.	rio than
(4)		-~	16	
(4)	The order and	the spin p	parts of the wave	efunction must be
निम				symmetric
(1)	न में कौन-सा पाउली के रि	त्रखात क अ -	नुरूप नहीं है ?	
(3)	कोई दो इलेक्ट्रान एक ऐर क्वान्टम संख्याएँ एक सी	क्षा आइगन र हो ं	अवस्था में नहीं रह	सकते जिनकी चारों
(2)				
``,	असममित है			•
(3)	यदि तरंगफलन का कक्षीय सममित है	भाग असम	मित है तो तरंगफल	निका चक्रण भाग
(4)	तरंगफलन के कक्षीय और या एक साथ असमस्रित हो	र्शक्तम भाग	} } • •	•
	या एक साथ असममित हो	नग्रन नाग नि चाहिए	दाना हा एक साथ :	सममित होने चाहिए
		-	•	
120 The	fermi selection rule for	β decay i	s ;	
(1)	$\Delta j = 0, \Delta p \neq 0$		$\Delta j \neq 0, \Delta p = 0$	
(3)	$\Delta j = 0, \Delta p = 0$		$\Delta j \neq 0, \Delta p \neq 0$	
βक्ष	य के लिए फर्मी चयन निय	प है :	$\Delta y \neq 0, \Delta p \neq 0$	
	$\Delta j = 0, \Delta p \neq 0$		$\Delta j \neq 0, \Delta p = 0$	
(3)	$\Delta j = 0, \Delta p = 0$		$\Delta j \neq 0, \Delta p = 0$ $\Delta j \neq 0, \Delta p \neq 0$	
EB52_A]		52	$\Delta y \neq 0, \Delta p \neq 0$	
•		S _E		[Contd

121	Educational	psychology	is

- (1) A normative science
- (2) An applied science

(3) Pure science

(4) None of the above

शिक्षा मनोविज्ञान है -

(1) मानक विज्ञान

(2) अनुप्रयुक्त विज्ञान

(3) विशुद्ध विज्ञान

(4) उपरोक्त में से कोई नहीं

122 Educational psychology is concerned with

(1) The learner

- (2) The learning process
- (3) The learning situations
- (4) all of the above

शिक्षा मनोविज्ञान सम्बन्धित है -

- (1) अधिगम कर्ता से
- (2) अधिगम प्रक्रिया से
- (3) अधिगम स्थितियों से
- (4) उपरोक्त सभी

123 Human development is the result of

- (1) Biological factors
- (2) Genetic and environmental factors
- (3) Social factors
- (4) Motivational factors

मानव विकास परिणाम है -

- (1) जैविक कारकों का
- (2) वंशागित एवं वातावरणीय कारकों का
- (3) सामाजिक कारकों का
- (4) अभिप्रेरण कारकों का

124 Chain learning is associated wit	h
(1) Tolman	(2) Gagne
(3) Thorndike	(4) Bruner
शृंखला अधिगम सम्बन्धित है <u>—</u>	() 2.11.01
(1) टॉलमैन से	(2) गाने से
(3) थार्नडाइक से	(4) ब्रूनर से
125 Adolescence is a period of storm	and stress - said by
(1) Cole	(2) William Mcdougall
(3) Stanley Hall	(4) Brickson
किशोरावस्था तूफान एवं तनाव की अव	स्था है, कहा है –
(1) कोल ने	(2) विलियम मक्डूगल ने
(3) स्टेनले हाल ने	(4) ब्रिकसन ने
26 The teacher in the classroom make (1) to provide experiences to stud (2) to provide opportunity to reflect (3) to provide supportive learning (4) all of the above शिक्षक कक्षा—कक्ष में प्रयास करता है — (1) विद्यार्थियों को अनुभव प्रदान करने व	ents ct environment
(2) विद्यार्थियों को चिन्तन का अवसर देने	ने का

उपरोक्त सभी

विद्यार्थियों को सहायक अधिगम वातावरण देने का

12	7 W	Thich one of the following is a evelopment?	stag	ge in Kohlberg's the	ory of moral
	(1) Pre-operational	(2)	Conventional	
	(3)) Sensori-motor	(4)	Concrete operation	nal
	को की	हलबर्ग के नैतिक विकास सिद्धान्त के अ ंएक अवस्था है ?	न्तर्गत	निम्नलिखित में से कौन-	सी उस सिद्धान्त
	(1)) पूर्व संक्रियात्मक	(2)	परम्परागत	
	(3)) संवेदीप्रेरक	(4)	. मूर्त संक्रियात्मक	
128	(1) (2) (3) (4) जीन (1) (2) (3)	Pre-operational stage Formal operational stage Concrete operational stage पियाजे के अनुसार तार्किक चिन्तन संवेदी-प्रेरक अवस्था में पूर्व-संक्रियात्मक अवस्था में			
129	(1) (3) 中司行 (1)	Kohler वैज्ञान में व्यवहारवाद का प्रतिपादन व जॉन डीवी	(2) (4) ह रने (2)	William James John B. Watson	
EB52	[_A]	55			[Contd

The achievement of learning is	•
(1) Attitude	
(3) Skill (2)	Knowledge
अधिगम का निष्पादन है —	All of the above
(1) अभिवृत्ति	
(2) (3) कौशल	ज्ञान
(4)	उपरोक्त सभी
131 Which of the following is not a principle (1) It is a continuous process (2) It is an individualised process (3) It does not proceeds from the general (4) It is a product of interaction 「中中間個面 详 说 ずーー 相 自動根 む 保護中間 (1) यह 「中で元で、電子」 司 「	al to the specific नहीं है ?
(3) यह सामान्य से विशिष्ट की ओर आगे नहीं(4) यह अन्तःक्रिया का उत्पाद है	बढ़ती है
132 According to Gagne which one is the highest (1) Chain learning (2) Verbal associate learning (3) Stimulus response learning (4) Problem selving	order of learning ?
learning learning	
गाने के अनुसार अधिगम का उच्चतम स्तर् कौन-सा है (1) शृंखला अधिगम	} ?
(2) शाब्दिक साहचर्य अधिगम	•
(3) उद्दीपन–अनुक्रिया अधिगम	
(4) समस्या <u>-समाधान</u> अ रिकार	·
ED32_A	
56	[Contd

133	Acco	ording to constructivism, teach	er sho	uld play mainly the role of a -
•	(1)	Philosopher	(2)	Friend
	(3)	Facilitator	(4)	Instructor
	निर्मि	तेवाद के अनुसार एक अध्यापक	को मुख	य भूमिका निभानी चाहिए -
	(1)	दार्शनिक की	(2)	मित्र की
	(3)	सहजकर्ता की	(4)	अनुदेशक की
				•
134	Cha	racteristics of creativity is -		
	(1)	Originality	(2)	Fluency
	(3)	Flexibility	(4)	All of the above
	सृजन	ात्मकता की विशेषता होती है -		•
	(1)	मौलिकता	(2)	प्रवाहशीलता
	(3)	लचीलापन	(4)	उपरोक्त सभी
135	Nev	w knowledge is acquired throu	ıgh	
	(1)	memorization		
	(2)	transmission of knowledge		
	(3)	experience and searching no	ew me	eanings
	(4)	none of the above		
	नवी	न ज्ञान की प्राप्ति होती है		
	.(1)	रटने से		
	(2)	ज्ञान के स्थानान्तरण से		
	(3)	अनुभव एवं नवीन अर्थ खोजने	से	
	(4)	उपरोक्त में से कोई नहीं		

EP

7.

8.

9.

10,

चेताः

的时代的数据数据数据数据的图形的词形形式的语言。

(1) managing emotions
(1) managing emotions
(2) motivating oneself
(3) recognizing emotions in others
(4) ability to discriminate among living things
निम्नलिखित में से कौन गा नंगे
निम्नितिखित में से कौन-सा संवेगात्मक बुद्धि का तत्व नहीं है ?.
(1) संवेगों का प्रबंधन
(2) स्व अभिप्रेरित करना
(3) दूसरों के संवेगों को पहचानना
(4) सजीवों में विभेदन करने की क्षमता रखना
स्य पानता स्थाना
137 The stress related problem of the students can be removed through — (1) Teaching (2) Commanding (3) Guidance and counselling (4) All of the above विद्यार्थियों की तनाव सम्बन्धी समस्या दूर की जा सकती है — (1) शिक्षण से (2) नियंत्रण से (3) निर्देशन एवं परामर्श से (4) उपरोक्त सभी
138 Advance Organizer model was propounded by –
(1) Plaget
(3) Richard Suchman
एडवान्स ऑरगेनाइजर प्रतिरूप जिन्होंने दिया –
(1) पियाजे
(2) आसुबेल
(3) रिचर्ड सकमैन (4) डीवी

, 13	9 W	hich of the following is not	instruc	ctional material?
	(1)	Printed material	(2)) Transparency
	(3)	Overhead projector	(4)) Audio-casset
	निम्	निलखित में से कौन-सी अनुदेश	न सामग्री	नहीं है ?
	(1)	छपी सामग्री	(2)	्रान्सपेरेन्स <u>ी</u>
:	(3)	ओवर हेड प्रोजेक्टर	(4)	आडियो केसेट
•			,	
140	Соп	nmunication with oneself is	known	as –
	(1)	Group communication	(2)	Mass communication
	(3)	Interpersonal communication	on (4)	Intrapersonal communication
	आत्म	सम्प्रेषण को कहते हैं —		
	(1)	समूह सम्प्रेषण	(2)	जन सम्प्रेषण
	(3)	अंतर्वैयक्तिक सम्प्रेषण	(4)	अन्तःवैयक्तिक सम्प्रेषण
	•			
141	Whic	h one of the following is r	ot a d	efense mechanism ?
	(1)	Regression	(2)	Association
	(3)	Compensation	(4)	Sublimation
	निम्नलि	खित में से कौन-सी रक्षात्मक	क्रियाविधि	। नहीं है ?
	(1)	प्रतिगमन प्रतिगमन	(2)	साहचर्य
		क्षतिपूर्ति	(4)	उदात्तीकरण
EB52	_A J	59	9	[Contd
•				

142	Video-conferencing can be classified as one of the following ty, communication –		
	(1) Visual one way	(2) Audio-visual one way	
	(3) Audio-visual two way	(4) Visual two way	
	वीडीयो कॉन्फ्रेसिंग को निम्नलिखित प्रका	र के संचार में वर्गीकृत किया जा सकता है-	
	(1) दृश्य एक तरफा	(2) दृश्य-श्रव्य एक तरफा	
	(3) दृश्य-श्रव्य दो तरफा	(4) दृश्य दो तरफा	
143	Computer virus is a		
145	(1) Hardware	(2) Bacteria	
	(3) Software	(4) None of the above	
	कम्प्यूटर वायरस है –		
	(1) हार्डवेयर	(2) बैक्टेरिया	
	(3) सॉफ्टवेयर	(4) उपरोक्त में से कोई नहीं	
144	Information Communication Tech	nology includes -	
	(1) On line learning		
	(2) Web based learning		
	(3) Learning through the use o	f EDUSAT	
	(4) All of the above	a.	
	सूचना सम्प्रेषण तकनीकी में सम्मिलित	₹ -	
	(1) ऑन लाइन सीखना	er en	
	(2) वेब बेस्ड सीखना	•	
	(3) EDUSAT के माध्यम से सीखन	π	
	(4) उपरोक्त सभी		
		co I Contd	

	(1)	increase number of tests					
	(2)	inforce strict discipline					
	(3) provide a variety of learning experiences						
	(4) insist on uniform pace of learning						
	अधिग	ामकर्ता वैयक्तिक भिन्नताएँ प्रदर्शित	करते	हैं अतः शिक्षक को			
	(1)	परीक्षाओं की संख्या बढ़ानी चाहि	ए				
	(2)	कठोर अनुशासन लागू करना चार्	हेए .				
	(3)	विविध अधिगम अनुभव उपलब्ध	कराने	चाहिए			
	(4)	अधिगम की समान गति पर बल	देना	चाहिए			
146	How	many factors are included in G	uilford	I's model of structure of intellect?			
	(1)	100	(2)	120			
	(3)	200	(4)	150			
	गिलप्र	ोर्ड द्वारा प्रतिपादित बौद्धिक सं रचना	के मॉड	इल में कितने तत्वों को सम्मिलित किया			
	गया	है ?					
	(1)	100	(2)	120			
	(3)	200	(4)	150			
				1980			
147	Whice subje	<u>-</u>	m and	l up-to-date information about a			
	(1)	Encyclopedia	(2).	Internet			
	(3)	Academic Journals	(4)	International Conferences			
	किसी	विषय पर सर्वाधिक एवं अद्यतन	सूचना	किस स्रोत से प्राप्त होती है ?			
	(1)	विश्वकोश से	(2)	इण्टरनेट से			
	(3)	अकादमिक पत्रिकाओं से	(4)	अन्तर्राष्ट्रीय सम्मेलनों से			

, 145 Learner display individual differences, so a teacher should

EB52	2_A]	6	2	[Contd
	.(3)	प्रभाव का नियम	(4)	सापेक्षता का नियम
	(1)	अभ्यास का नियम	(2)	तत्परता का नियम
		प्रितिक्रियाओं को सीखने के उप है'' यह है —	रान्त सन्	तुष्टि प्राप्त होती है उन्हें सीख लिया
		The law of effect		The law of relativity
	(1)		(2)	The law of readiness
150		responses which are followed, is:	ed by sa	atisfying after-effects tends to be
			• • • • • • • • • • • • • • • • • • • •	
	(3)	कार्ल जुंग	(4)	गार्डनर
	(1)	अल्फ्रेड एडलर	(2)	सिग्मण्ड फ्रायड
	मनोवि	वेश्लेषण सिद्धान्त का प्रतिपादन जि	जेन्होंने वि	केया –
	(3)	Carl Jung	(4)	Gardner
	(1)	Alfred Adler	(2)	Sigmund Freud
149	Psyc	choanalysis is propounded by	À —	
	(3)	वाइगोत्सकी	(4)	कोहलर
	(1)	पियाजे	(2)	कोहलबर्ग
	किस	ाने सामाजिक निर्मितिवाद के सिङ्	द्वान्त पर	अधिक बल दिया ?
	(3)	Vygotsky	(4)	Kohler
	(1)	Piaget	(2)	Kohlberg
140	o wn	io gave more emphasis to the	he theor	ry of social constructivism:

EB52_A J

63

 $\{\chi_{\widetilde{\mathcal{M}}}\}_{\widetilde{\mathcal{M}}}$

[Contd...

SPACE FOR ROUGH WORK / कच्चे काम के लिये जगह