Question Paper Name: Physics Actual Subject Name: physics

Creation Date: 2016-01-15 15:58:19

Duration: 120 **Total Marks:** 100

Group Number: 1
Group Id: 8273474

Group Maximum Duration:

Group Minimum Duration:

Revisit allowed for view?:

No
Revisit allowed for edit?:

No
Break time:

O
Mandatory Break time:

No
Group Marks:

physics

Group 1

Section Id: 8273474

Section Number:

Section type : Online
Mandatory or Optional: Mandatory
Number of Questions: 100

Number of Questions to be attempted: 100 Section Marks: 100

Sub-Section Number: 1

Sub-Section Id: 8273474

Question Shuffling Allowed: Yes

Question Number: 1 Question Id: 827347301 Question Type: MCQ

A circular rod of length 1m and diameter 0.8cm is clamped rigidly at one of its end in a vertical position. A couple of magnitude N dynes/cm is applied at the open end resulting in deflecting a mirror fixed near this end to deflect the spot of light by 10cm on a scale kept at a distance of 1m. If the modulus of rigidity of the bar is

 $\eta = 8.0 \times 10^{11} \, dynes/cm^2$, calculate N?

Options:

 $1.6 \times 10^6 dynes/cm$

 $1.6 \times 10^7 dynes/cm$

 $2.56 \times 10^6 dynes/cm$

$2.56 \times 10^7 dynes/cm$

Question Number: 2 Question Id: 827347302 Question Type: MCQ

A champion swimmer wants to cross a river spanning 2 km. The velocity of the flow of water in the river is 6 km/hr. The swimmer desires to go exactly to the opposite end. His maximum speed in still water is 10 km/hr. Find the time he would take to cross the river?

Options:

10 min.

15 min.

20 min.

25 min.

Question Number: 3 Question Id: 827347303 Question Type: MCQ

A car of mass M has a simple pendulum suspended from its ceiling. If at any instant the pendulum makes an angle θ with the vertical, the acceleration, a, of the car is given by

Options:

 $a = \tan \theta$

 $a = \cos \theta$

 $a = M \tan \theta$

 $a = M \cos \theta$

Question Number: 4 Question Id: 827347304 Question Type: MCQ

Consider a fixed sphere of radius R and a particle of mass M slides on its surface from the topmost point and leaves the contact with the sphere at an angle θ . The angle θ is given by

Options:

$$cos^{-1}\left(\frac{1}{3}\right)$$

$$sin^{-1}\left(\frac{1}{3}\right)$$

$$cos^{-1}\left(\frac{2}{3}\right)$$

$$sin^{-1}\left(\frac{2}{3}\right)$$

Question Number: 5 Question Id: 827347305 Question Type: MCQ

A central force $\vec{f} = -k\frac{\hat{r}}{r^2}$ acts on a particle of mass M. If the total energy of the particle is E, then its speed V is given by

$$\sqrt{\frac{k}{Mr^2} - \frac{E}{M}}$$

$$\sqrt{\frac{k}{Mr^2} - \frac{2E}{M}}$$

$$\sqrt{\frac{k}{2Mr^2} + \frac{2E}{M}}$$

$$\sqrt{\frac{k}{Mr^2} + \frac{2E}{M}}$$

Question Number: 6 Question Id: 827347306 Question Type: MCQ

Liquid drops of water, each of radius r, combines to form a drop of radius R. If T is the surface tension then the rise in temperature of the resulting droplet will be

Options:

$$2T\left[\frac{1}{r} - \frac{1}{R}\right]$$

$$3T\left[\frac{1}{r}-\frac{1}{R}\right]$$

$$2T\left[\frac{1}{r} + \frac{1}{R}\right]$$

$$3T\left[\frac{1}{r} + \frac{1}{R}\right]$$

Question Number: 7 Question Id: 827347307 Question Type: MCQ

Two masses M_1 and M_2 are connected by a massless spring of force constant k. If at any instant, the displacement of the two masses are respectively x_1 and x_2 , then the Lagrangian L and eigen frequency of small oscillation ω are given by

Options:

$$L = \frac{1}{2} M_{1} \dot{x_{1}}^{2} + \frac{1}{2} M_{2} \dot{x_{2}}^{2} - \frac{1}{2} k(x_{2} - x_{1})^{2} ; \omega = \sqrt{\frac{k(M_{1} + M_{2})}{M_{1} M_{2}}}$$

$$L = \frac{1}{2} M_{1} \dot{x_{1}}^{2} + \frac{1}{2} M_{2} \dot{x_{2}}^{2} + \frac{1}{2} k(x_{2} - x_{1})^{2} ; \omega = \sqrt{\frac{k(M_{1} - M_{2})}{M_{1} M_{2}}}$$

$$L = \frac{1}{2} M_{1} \dot{x_{1}}^{2} - \frac{1}{2} M_{2} \dot{x_{2}}^{2} - \frac{1}{2} k(x_{2} - x_{1})^{2} ; \omega = \sqrt{\frac{k(M_{1} + M_{2})}{M_{1} M_{2}}}$$

$$L = \frac{1}{2} M_{1} \dot{x_{1}}^{2} - \frac{1}{2} M_{2} \dot{x_{2}}^{2} + \frac{1}{2} k(x_{2} - x_{1})^{2} ; \omega = \sqrt{\frac{k(M_{1} - M_{2})}{M_{1} M_{2}}}$$

$$L = \frac{1}{2} M_{1} \dot{x_{1}}^{2} - \frac{1}{2} M_{2} \dot{x_{2}}^{2} + \frac{1}{2} k(x_{2} - x_{1})^{2} ; \omega = \sqrt{\frac{k(M_{1} - M_{2})}{M_{1} M_{2}}}$$

Question Number: 8 Question Id: 827347308 Question Type: MCQ

The Hamiltonian for a charge particle of mass m, momentum \vec{p} and carrying a charge q in an electromagnetic field (\vec{A}, φ) with velocity c may be written as: Options:

$$H = \frac{1}{2}m\left(\frac{\vec{p}}{m} + \frac{q}{mc}\vec{A}\right)^2 + q\varphi$$

$$H = \frac{1}{2}m\left(\frac{\vec{p}}{m} - \frac{q}{mc}\vec{A}\right)^2 - q\varphi$$

$$H = \frac{1}{2}m\left(\frac{\vec{p}}{m} + \frac{q}{mc}\vec{A}\right)^2 - q\varphi$$

$$H = \frac{1}{2}m\left(\frac{\vec{p}}{m} - \frac{q}{mc}\vec{A}\right)^2 + q\varphi$$

Question Number: 9 Question Id: 827347309 Question Type: MCQ

The mean life of muon in its rest frame is $2 \times 10^{-6} s$. If it is moving with a speed of 0.93 times the speed of light c, then its life in laboratory frame will be

Options:

$$2.44 \times 10^{-6} s$$

$$3.44 \times 10^{-6} s$$

$$4.44 \times 10^{-6} s$$

$$5.44 \times 10^{-6} s$$

Question Number: 10 Question Id: 827347310 Question Type: MCQ

Calculate the relative velocity of an electron with respect to a photon when the electron is moving with a speed of 0.9 times the velocity of light, c, in a direction opposite to that of a moving photon.

Options:

0.90

C

c/2

c/4

Question Number: 11 Question Id: 827347311 Question Type: MCQ

A space ship moves with certain velocity V such that the every day corresponds to 4 days on earth's surface. Calculate V?

$$0.9 \times 10^8 m/s$$

$$1.9 \times 10^{8} m/s$$

$$2.9 \times 10^{8} m/s$$

Question Number: 12 Question Id: 827347312 Question Type: MCQ

If p and T denote the momentum and kinetic energy of a particle, then the rest mass of the particle is given by

Options:

$$m_0 = \frac{p^2 c^2 - T^2}{2 T c^2}$$

$$m_0 = \frac{p^2 c^2 + T^2}{2 T c^2}$$

$$m_0 = \frac{p^2 c^2 - T^2}{T c^2}$$

$$m_0 = \frac{3p^2 c^2 - T^2}{2 T c^2}$$

Question Number: 13 Question Id: 827347313 Question Type: MCQ

An infinitely straight wire is charged uniformly. If charge per unit length of the wire is μ and the permittivity of the free space is \in_0 then the electric field E at a perpendicular distance R from the wire is given by

Options:

$$\frac{1}{4\pi \in_0} \frac{\mu}{r}$$

$$\frac{1}{2\pi \in_0} \frac{\mu}{r}$$

$$\frac{1}{2\pi \in_0} \ln \frac{\mu}{r}$$

$$\frac{1}{4\pi \in_0} \ln \frac{\mu}{r}$$

Question Number: 14 Question Id: 827347314 Question Type: MCQ

A solid sphere of radius R has uniformly distributed charge Q. The potential V at any point r < R is given by

$$\frac{1}{4\pi \in_0} \frac{Q}{R}$$

$$\frac{1}{2\pi \in_0} \frac{Q}{R}$$

$$\frac{1}{4\pi \in_0} \frac{Q}{R} \left[\frac{3}{2} - \frac{r^2}{R^2} \right]$$

$$\frac{1}{4\pi \in_0} \frac{Q}{R} \left[\frac{3}{2} - \frac{r^2}{2R^2} \right]$$

Question Number: 15 Question Id: 827347315 Question Type: MCQ

Find the charge distribution ρ of nucleus for which the Yukawa potential at a point r from the center is $V(r) = \frac{Q}{4\pi\epsilon_0} \frac{e^{-r/a}}{r}$?

Options:

$$\rho = -\frac{Q}{4\pi \epsilon_0} \frac{e^{-r/a}}{r}$$

$$\rho = -\frac{Q}{4\pi a^2} \frac{e^{-r/a}}{r}$$

$$\rho = -\frac{Q}{4\pi a^3} \frac{e^{-r/a}}{r}$$

$$\rho = -\frac{Q}{4\pi a^3} \frac{e^{-r/a}}{r}$$

$$\rho = -\frac{Q}{4\pi} \frac{e^{-r/a}}{r}$$

Question Number: 16 Question Id: 827347316 Question Type: MCQ

Certain space has uniform electric field E and magnetic field B. The scalar and vector potentials at a position vector \vec{r} in such a space is

Options:

$$\phi = \vec{E}.\vec{r}; \vec{A} = (\vec{B} \times \vec{r})$$

$$\phi = \vec{E}.\vec{r}; \vec{A} = \frac{1}{2}(\vec{B} \times \vec{r})$$

$$\phi = -\vec{E}.\vec{r}; \vec{A} = \frac{1}{2}(\vec{B} \times \vec{r})$$

$$\phi = -\vec{E}.\vec{r}; \vec{A} = \frac{1}{3}(\vec{B} \times \vec{r})$$

$$\phi = -\vec{E}.\vec{r}; \vec{A} = \frac{1}{3}(\vec{B} \times \vec{r})$$

Question Number: 17 Question Id: 827347317 Question Type: MCQ

The magnetic field \vec{B} , when $\vec{E} = E_0 \sin(\omega t - \alpha z) \widehat{a_y}$, is given by

$$\frac{E_0 \alpha}{\omega} \sin(\omega t - \alpha z) \widehat{a_x}$$

$$-\frac{E_0 \alpha}{\omega} \cos(\omega t + \alpha z) \widehat{a_y}$$

$$-\frac{E_0 \alpha}{\omega} \sin(\omega t - \alpha z) \widehat{a_z}$$

$$-\frac{E_0}{\omega}\cos(\omega t + \alpha z)\widehat{a_x}$$

Question Number: 18 Question Id: 827347318 Question Type: MCQ

In an isotropic, homogeneous and loss-less medium with $\in_r = 8$ and $\mu_r = 2$, the electric and magnetic fields are respectively $\vec{E} = 60\pi \cos(10^6 t - \alpha x) \widehat{a_y}$ (V/m) and $\vec{H} = P \cos(10^6 t - \alpha x) \widehat{a_z}$ (A/m). The values of P and α respectively are:

Options:

2,0.055

2,0.065

1,0.042

1,0.055

Question Number: 19 Question Id: 827347319 Question Type: MCQ

The Laplace equation satisfied by the potential V at a point outside a cylindrical conductor of radius b is given by

 $V = -\left(1 - \frac{b^2}{r^2}\right) E_0 r \cos \theta$. Find the surface charge density σ (per unit area) of the conducting surface?

Options:

 $\in_0 E_0 \cos \theta$

 $\in_0 E_0 \sin \theta$

 $2 \in_{0} E_{0} \cos \theta$

 $2 \in_{0} E_{0} \sin \theta$

Question Number: 20 Question Id: 827347320 Question Type: MCQ

Find the amplitude of electric field (E_0) and magnetic field (H_0) of radiation if earth receives 2 $cal.min.^{-1}.cm^{-2}$ of solar radiation?

Options:

$$E_0 = 1027.12(V/m)$$
; $H_0 = 2.72(A/m)$

$$E_0 = 726.32(V/m)$$
; $H_0 = 1.93(A/m)$

$$E_0 = 363.16(V/m)$$
; $H_0 = 1.93(A/m)$

$$E_0 = 726.32(V/m)$$
; $H_0 = 3.86(A/m)$

Question Number: 21 Question Id: 827347321 Question Type: MCQ

If the magnetic vector potential is given by $\vec{A} = (y^2 \hat{\imath} - x^2 \hat{\jmath})$, then the current density \vec{J} may be written as

$$\frac{2}{\mu_0} [\hat{\imath} - \hat{\jmath}]$$

$$\frac{2}{\mu_0} [\hat{\imath} + \hat{\jmath}]$$

$$-\frac{2}{\mu_0} [\hat{\imath} - \hat{\jmath}]$$

$$-\frac{2}{\mu_0} [\hat{\imath} + \hat{\jmath}]$$

Question Number: 22 Question Id: 827347322 Question Type: MCQ

If in vacuum the electric and magnetic field respectively are $E = E_0 \sin(kx - \omega t)$ and $B = B_0 \sin(kx - \omega t)$, then

Options:

$$E_0 B_0 = \omega k$$

$$E_0\omega = B_0k$$

$$E_0/\omega = B_0 k$$

$$E_0 k = B_0 \omega$$

Question Number: 23 Question Id: 827347323 Question Type: MCQ

An interference fringe system is observed due to interference of two light beams of intensities I and 9I. If the phase difference is $\pi/2$ at a point A and π at point B, then the difference of the intensities at A and B is

Options:

3I

41

5*I*

Question Number: 24 Question Id: 827347324 Question Type: MCQ

A first order diffraction image is observed using a lamp emitting electromagnetic waves of wavelength $6000 A^0$ and a fabric with 200 threads/cm. Find the angle between the lamp filament and its first diffracted image.

Options:

31.25 min

41.25 min

51.25 min

55.25 min

Question Number: 25 Question Id: 827347325 Question Type: MCQ

The numerical aperture of a step index fibre is 0.15. If the core diameter and refractive index are 60cm and 1.45 respectively, find the normalized frequency for the fibre when light of wavelength of $0.9\mu m$ gets transmitted through it.

Options:

 3.14×10^{4}

 3.14×10^{5}

 3.14×10^{6}

 3.14×10^{7}

Question Number: 26 Question Id: 827347326 Question Type: MCQ

In an experiment 1gm helium at S.T.P is compressed adiabatically such that its pressure is doubled. If = $8.3 \times 10^7 ergs/^{\circ}C/mole$, find the work done in compressing the gas?

Options:

 $310.2 \times 10^7 ergs$

 $-310.2 \times 10^{7} ergs$

 $350.2 \times 10^6 ergs$

 $-350.2 \times 10^7 ergs$

Question Number: 27 Question Id: 827347327 Question Type: MCQ

What is the difference between 1gm of ice at 0° C and 1gm of steam at 100° C. Given that latent heat of fusion of ice is 80cals. And latent heat of steam at 100° C is 540cals.

Options:

3.12 cal/°C

0.312 cal/°C

0.0312 cal/°C

0.00312 cal/°C

Question Number: 28 Question Id: 827347328 Question Type: MCQ

Which of the following relation hold true? All symbols have their usual meaning.

Ontions:

$$TdS = C_V dT + T \left(\frac{\partial p}{\partial T}\right)_V dV$$

$$TdS = C_V dT + T \left(\frac{\partial S}{\partial T}\right)_V dV$$

$$TdS = C_V dT - T \left(\frac{\partial p}{\partial T}\right)_V dV$$

$$TdS = C_V dT - T \left(\frac{\partial S}{\partial T}\right)_V dV$$

Question Number: 29 Question Id: 827347329 Question Type: MCQ

The Gibb's function, G, in thermodynamics is given by G = H - TS, where H, T and S respectively refers to enthalpy, temperature and entropy. For an isothermal, isobaric reversible process G

Options:

varies nonlinearly with P

is less than zero

remains constant

varies nonlinearly with volume

Question Number: 30 Question Id: 827347330 Question Type: MCQ

Thermodynamical relation that express the change in temperature with change in volume at constant entropy is given by

Options:

$$\left(\frac{\partial T}{\partial V}\right)_{s} = \left(\frac{\partial p}{\partial Q}\right)_{V}$$

$$\left(\frac{\partial T}{\partial V}\right)_{S} = T\left(\frac{\partial p}{\partial Q}\right)_{V}$$

$$\left(\frac{\partial T}{\partial V}\right)_{s} = -T\left(\frac{\partial p}{\partial Q}\right)_{v}$$

$$\left(\frac{\partial T}{\partial V}\right)_{s} = -V\left(\frac{\partial p}{\partial Q}\right)_{v}$$

Question Number: 31 Question Id: 827347331 Question Type: MCQ

The value of the integral $\oint \frac{dQ}{T}$ for a reversible cycle is

Options:

zero

greater than zero

less than zero

T, the temperature

Question Number: 32 Question Id: 827347332 Question Type: MCQ

For non-interacting particles of spin $\frac{1}{2}$, the total number of accessible states is

Options:

2N

N

 2^N

 N^2

```
Question Number: 33 Question Id: 827347333 Question Type: MCQ
For a single particle, the number of coordinates in phase space equals
Options:
6
4
3
2
Question Number: 34 Question Id: 827347334 Question Type: MCQ
The thermodynamic probability for a system in equilibrium is
Options:
zero
one
maximum
minimum
Question Number: 35 Question Id: 827347335 Question Type: MCQ
The translational partition function, Z, for a gas molecule is
Options:
proportional to T^{1/2}
proportional to T^{1/3}
proportional to T^{3/2}
proportional to T^{2/3}
Question Number: 36 Question Id: 827347336 Question Type: MCQ
If E_F is the Fermi energy and f(E) is the fermi distribution at temperature T, then
f(E_F) is
Options:
equal to \frac{1}{2}
a step function
E < E_F
E > E_F
Question Number: 37 Question Id: 827347337 Question Type: MCQ
The average value of v_x for a system of particle obeying Maxwellian distribution is
Options:
^{1}/_{k_{B}T}
```

Question Number: 38 Question Id: 827347338 Question Type: MCQ

Find the most probable position of the particle if the wave function is

$$\psi(x) = \frac{1+ix}{1+ix^2}$$

Options:

$$x = \pm \sqrt{\sqrt{2} - 1}$$

$$x = \pm \sqrt{2+1}$$

$$x = \pm \sqrt{\sqrt{3} - 1}$$

$$x = \pm \sqrt{\sqrt{3} + 1}$$

Question Number: 39 Question Id: 827347339 Question Type: MCQ

If $\psi(r) = \sqrt{\frac{1}{\pi a^2}} \, e^{-r/a}$ corresponds to the ground state wave function of hydrogen atom, the average value < r > is

Options:

zero

Question Number: 40 Question Id: 827347340 Question Type: MCQ

The quantum mechanical operator representing the momentum of a particle is given by

Options:

$$-i\hbar \partial/\partial x$$

$$-i\hbar \partial /\partial t$$

$$i\hbar \frac{d^2}{dx^2}$$

$$-i\hbar \frac{d^2}{dx^2}$$

Question Number: 41 Question Id: 827347341 Question Type: MCQ

The de-Broglie wavelength, λ , for a charge Q accelerated through a potential V volts is given by

Options:

$$\lambda = \frac{hm}{\sqrt{QV}}$$

$$\lambda = h / \sqrt{2mQV}$$

$$\lambda = h / \sqrt{mQV}$$

$$\lambda = h/mQV$$

Question Number: 42 Question Id: 827347342 Question Type: MCQ

The Schrodinger time independent equation can be written as

Options:

$$H\psi = (E - V)\psi$$

$$H\psi + E\psi = 0$$

$$H\psi = (E + V)\psi$$

$$H\psi = E\psi$$

Question Number: 43 Question Id: 827347343 Question Type: MCQ

The uncertainty in the velocity of an electron when they are located within a distance of $2A^{\circ}$ is

Options:

$$5.83 \times 10^5 m/s$$

$$5.83 \times 10^7 m/s$$

$$5.83 \times 10^9 m/s$$

$$5.83 \times 10^8 m/s$$

Question Number: 44 Question Id: 827347344 Question Type: MCQ

The average momentum in the ground state of a particle of mass m moving in a one-dimensional box of length L is given by

Options:

$$h/2\pi L$$

Question Number: 45 Question Id: 827347345 Question Type: MCQ

If $L_{\pm} = L_x \pm i L_y$, find the value of L^2 ?

Options:

$$\frac{1}{2}(2L_{+}L_{-} + L_{-}L_{+})$$

$$\frac{1}{2}(L_{+}L_{-} + L_{-}L_{+})L_{z}^{2}$$

$$(2L_{+}L_{-} + L_{-}L_{+})$$

$$\frac{1}{2}(2L_{+}L_{-} + L_{-}L_{+})L_{z}^{2}$$

Question Number: 46 Question Id: 827347346 Question Type: MCQ

If $\vec{L} = L_x \hat{\imath} + L_y \hat{\jmath} + L_z \hat{k}$, the value of commutator $[L_x, L_y, L_z]$ is

Options:

$$i\hbar[L_x + L_y]$$

$$i\hbar \left[L_x^2 + L_y^2\right]$$

$$i\hbar[L_x^2-L_y^2]$$

$$i\hbar[L_x-L_y]$$

Question Number: 47 Question Id: 827347347 Question Type: MCQ

What is the probability that a particle has $L_z=0\,$, if its state is given by

$$\frac{1}{\sqrt{14}} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

Options:

Question Number: 48 Question Id: 827347348 Question Type: MCQ

The wave function of hydrogen atom is given by

$$\psi(r,\theta,\phi) = \frac{1}{\sqrt{2}} \left(\frac{1}{a_0}\right)^{3/2} \left[1 - \frac{r}{2a_0}\right] e^{-r/2a_0} \cos\theta$$

where a_0 is a constant. The quantum number of the state are

$$n = 1, l = 0, m = 0$$

$$n = 2, l = 1, m = 0$$

$$n = 2, l = 1, m = 1$$

 $n = 1, l = 2, m = 1$

Question Number: 49 Question Id: 827347349 Question Type: MCQ

The state $S_z = \hbar/2$ refers to a spin half particle. The expectation value for S_y^2 is

Options:

$$\hbar/2$$

$$\hbar^2/4$$

$$\hbar^2/3$$

$$\hbar/3$$

Question Number: 50 Question Id: 827347350 Question Type: MCQ

If

$$V(\vec{r}) = \begin{cases} V_0 & \text{if } r \le a \\ 0 & \text{if } r > a \end{cases}$$

then the low energy scattering cross-section $\sigma(\theta)$ is

Options:

$$\left(\frac{2mV_0a^3}{3\hbar^2}\right)^2$$

$$\left(\frac{2mV_0a^3}{3\hbar^2}\right)^3$$

$$\left(\frac{2mV_0a^3}{\hbar^2}\right)^2$$

$$\left(\frac{2mV_0a^3}{5\hbar^2}\right)^3$$

Question Number: 51 Question Id: 827347351 Question Type: MCQ

A transistor is put in a common base configuration such that the emitter current is 2mA. If the collector current in open emitter circuit is $50\mu A$, what is the total collector current for $\alpha = 0.90$ is

Options:

1.80mA

1.70mA

1.75mA

1.85mA

Question Number: 52 Question Id: 827347352 Question Type: MCQ

When electromagnetic radiation shorter than 3000nm is incident on a semiconductor, its conductivity increases. Find the band gap of the semiconductor

Options:

0.415eV

1.415eV

0.750eV

0.315eV

Question Number: 53 Question Id: 827347353 Question Type: MCQ

If the band gap of pure silicon is 1.1eV, then by doping with

Options:

n - type impurities, the band gap is less than 1.1eV

p-orn -type impurities, the band gap is always 1.1eV

p - type impurities, the band gap becomes 1.25eV

p – type impurities , the band gap more than 1.1eV

Question Number: 54 Question Id: 827347354 Question Type: MCQ

The maximum resistance R that can be used in series with a zener diode

 $(V_Z = 5V, I_Z = 10mA)$ when a 20V supply is connected across the combination is

Options:

 $10k\Omega$

 $1.0k\Omega$

 $1.5k\Omega$

 $15k\Omega$

Question Number: 55 Question Id: 827347355 Question Type: MCQ

In an n-p-n transistor circuit if $I_c=2mA$ and $\alpha=0.98$ then the base current I_b is

Options:

0.041mA

4.10mA

0.41mA

0.0041mA

Question Number: 56 Question Id: 827347356 Question Type: MCQ

A transistor amplifier has current gain 50. When connected with the input signal

$$V_i = V_1 \sin(2\pi f t + \pi/2)$$

the output signal is found to be

$$V_o = V_2 \sin(2\pi f t + \frac{3\pi}{2}).$$

The transistor is connected as

- a common base amplifier
- a common collector amplifier
- a common emitter amplifier
- a push- pull amplifier

Question Number: 57 Question Id: 827347357 Question Type: MCQ

An operational amplifier has bias currents of $40\mu A$ and $39.5\mu A$. The input offset current is

Options:

250nA

500nA

750nA

150nA

Question Number: 58 Question Id: 827347358 Question Type: MCQ

An op-amp has 3 terminal amplifier stages with the following gains and critical frequencies

Stage-1:
$$A_{v_1}=40dB$$
 , $f_{c_1}=4kHz$; Stage-2: $A_{v_2}=20dB$, $f_{c_2}=40kHz$; Stage-1: $A_3=10dB$, $f_3=160kHz$

The open-loop midrange gain and total phase lag between $f = f_{c_1}$ respectively is

Options:

 $70dB, -52.14^{\circ}$

 $30dB, -52.14^{\circ}$

 $50dB, +52.14^{\circ}$

 $70dB, +52.14^{\circ}$

Question Number: 59 Question Id: 827347359 Question Type: MCQ

Using half adders and OR-gates a full adder can be implemented. Therefore a 4-bit parallel full adder without any initial carry needs

Options:

7 half adders and 4-OR gates

7 half adders and 3-OR gates

8 half adders and 2-OR gates

8 half adders and 4-OR gates

Question Number: 60 Question Id: 827347360 Question Type: MCQ

The clock frequency, required for having a delay of $32\mu S$ in 8 bit serial register, is

Options:

275kHz

250kHz 300kHz 375kHz

Question Number: 61 Question Id: 827347361 Question Type: MCQ

If A and B are inputs to a logic gate and its output is X, then for A = 1, B = 0 it is observed that X = 1. What type of gate it could be ?

Options:

OR gate or NAND gate

AND gate or NOR gate

AND gate only

NOT gate or NOR gate

Question Number: 62 Question Id: 827347362 Question Type: MCQ

The JKFF , initially cleared and then clocked for 5 pulses. The output sequence Q will be

Options:

010000

010101

011001

010010

Question Number: 63 Question Id: 827347363 Question Type: MCQ

The characteristic table of an X-Y flip-flop is given below.

X	Y	Q_{n+1}
0	0	1
0	1	Q_n
1	0	$\overline{Q_n}$
1	1	0

It is needed to be implemented using J-K flip flop by making

Options:

$$J = X, K = \bar{Y}$$

$$J = Y, K = \bar{X}$$

$$J = \overline{Y}, K = X$$

$$J = \overline{X}, K = Y$$

Question Number: 64 Question Id: 827347364 Question Type: MCQ

If the radius of the n -th orbit of an electron in hydrogen atom is r_n , then its total energy is given by

Options:

$$e^{2}/2\pi \in_{0} r_{n}^{2}$$
 $-e^{2}/4\pi \in_{0} r_{n}^{2}$
 $e^{2}/8\pi \in_{0} r_{n}^{2}$
 $-e^{2}/8\pi \in_{0} r_{n}^{2}$

Question Number: 65 Question Id: 827347365 Question Type: MCQ

In hydrogen atom , the n -th energy level is given by

$$E_n = -\frac{1}{(4\pi \in_0)^2} \frac{me^4}{2n^2h^2}.$$

The n-th energy levels E_n^p of the positronium (it is a hydrogen like bound state of a positron and an electron) is

Options:

 $2E_n$

 $4E_n$

 $E_n/2$

 $E_n/4$

Question Number: 66 Question Id: 827347366 Question Type: MCQ

What is the ratio of frequencies of first line of Balmer series to that in Lyman series Options:

5/_{2.7}

27/5

5/9

9/27

Question Number: 67 Question Id: 827347367 Question Type: MCQ

If the wave function of hydrogen atom has φ - dependent part as $e^{i2\varphi}$, then the minimum principal quantum number n and angular momentum quantum number l are respectively

Options:

3 and 1

2 and 2

```
3 and 2
2 and 3
```

Question Number: 68 Question Id: 827347368 Question Type: MCQ

The possible values of total angular momentum J, in accordance with L-S coupling for a system of two electrons with $l_1 = 2$ and $l_2 = 1$, is

Options:

4,3,2

4,2,1

3,2,1,0

4,3,2,1,0

Question Number: 69 Question Id: 827347369 Question Type: MCQ

If the ionization energy for hydrogen atom is 13.6eV. Using Bohr's model, the ionization energy of Li^{2+} ion is

Options:

27.2eV

122.4 eV

40.8 eV

4.5 eV

Question Number: 70 Question Id: 827347370 Question Type: MCQ

An atom kept in a weak magnetic field shows Zeeman components for the transition $^2D_{5/2} \rightarrow ^2P_{3/2}$. How many components are observed?

Options:

14

12

10

8

Question Number: 71 Question Id: 827347371 Question Type: MCQ

Find the bond length of the CO molecule in which the first line of rotational spectra is $3.8423\,cm^{-1}$. Given that $M_C=19.921\times 10^{-27}kg$; $M_O=26.561\times 10^{-27}kg$.

Options:

 $0.0113\,A^{\circ}$

 $0.113 A^{\circ}$

 $1.13A^{\circ}$

1.31A°

Question Number: 72 Question Id: 827347372 Question Type: MCQ

The short wavelength cut-off of the continuous X-ray spectrum for a certain target is 0.1250nm. The potential applied to the X-ray tube is

Options:

9.930kV

4.965kV

19.860kV

2.482kV

Question Number: 73 Question Id: 827347373 Question Type: MCQ

In an experiment on Raman scattering , laser of certain frequency ν gets scattered by diatomic molecules of moment of inertia I . The Raman shifted frequency is proportional to

Options:

v

I

1-1

12

Question Number: 74 Question Id: 827347374 Question Type: MCQ

A material at a certain temperature T has two energy levels with a separation of wavelength of $0.1\mu m$. If the upper level is 1.75 as densely populated as the lower level, then T is

Options:

 $2.572 \times 10^4 K$

 $2.572 \times 10^3 K$

 $2.572 \times 10^{2} K$

 $2.572 \times 10^{5} K$

Question Number: 75 Question Id: 827347375 Question Type: MCQ

In Compton scattering experiment X-rays of wave length $3A^\circ$ is scattered by a substance such that the scattered photons are observed at an angle $\varphi=90^\circ$. What is the energy of the recoil electron? Given that $h=6.62\times 10^{-34}Js$, and the rest mass of electron $m_0=9.1\times 10^{-31}kg$.

Options:

1.2540e-018 Joules

3.2540e-018 Joules

4.2540e-018 Joules

5.2540e-018 Joules

Question Number: 76 Question Id: 827347376 Question Type: MCQ

In diamond, the angular distance between tetrahedral bonds are same as between the body diagonal of a cube. The value of the angle is given by

Options:

$$\theta = \cos^{-1}(\frac{1}{3})$$

$$\theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

$$\theta = cos^{-1} \left(\frac{1}{\sqrt{2}} \right)$$

$$\theta = tan^{-1}(\frac{1}{3})$$

Question Number: 77 Question Id: 827347377 Question Type: MCQ

If V is the volume of a unit cell in Bravais lattice, the volume of a unit cell in reciprocal lattice is

Options:

$$2\pi/v$$

$$(\pi)^{2}/_{V}$$

$$(2\pi)^3/_V$$

$$\pi^3/V$$

Question Number: 78 Question Id: 827347378 Question Type: MCQ

What is the density of electrons in Na crystal, if the nearest neighbor distance in it is

1.82A°?

Options:

 $0.215 \, m^{-1}$

 $0.107 \, m^{-1}$

 $3.640 \, m^{-1}$

 $1.820 \, m^{-1}$

Question Number: 79 Question Id: 827347379 Question Type: MCQ

The cell edge in NaCl crystal is a = 0.563nm. If Bragg's reflection has to occur at the smallest angle, the set of plane must correspond to the indices

Options:

011

100

110

111

Question Number: 80 Question Id: 827347380 Question Type: MCQ

In case of elastic vibration of crystal, if m -is the mass of any atom, a -the distance between nearest atoms and β is the force constant then the longitudinal vibration frequency is maximum if the wave number k is

Options:

 π

$$\pm \pi/a$$

$$\pm a/\pi$$

$$\pi/2$$

Question Number: 81 Question Id: 827347381 Question Type: MCQ

In the measurement of specific heat C_V in the low temperature limit $T \to 0$, the electronic contribution to it is proportional to

Options:

 T^{-1}

constant

 T^{-2}

 T^{-3}

Question Number: 82 Question Id: 827347382 Question Type: MCQ

In free electron gas model, the relation between Fermi energy E_F and the number density of electron n is given by

Options:

$$E_F = \left(\frac{\hbar^2}{2m}\right) (\pi^2 n)^{3/2}$$

$$E_F = \left(\frac{\hbar^2}{2m}\right) (3\pi^2 n)^{3/2}$$

$$E_F = \left(\frac{\hbar^2}{2m}\right) (3\pi^2 n)^{2/3}$$

$$E_F = \left(\frac{\hbar^2}{2m}\right) (3\pi^2 n)^{-3/2}$$

Question Number: 83 Question Id: 827347383 Question Type: MCQ

The Curie temperature of a ferromagnetic substance is 125K. Then

Options:

The plot of inverse susceptibility χ versus temperature T is linear with slope T_c , the Curie temperature.

The susceptibility χ gets doubled when the substance is cooled from 325K to 225K.

 χ^{-1} value is doubled when the substance is cooled from 325K to 225K.

All the magnetic dipoles gets oriented in the direction of 60°.

Question Number: 84 Question Id: 827347384 Question Type: MCQ

The mobility of electron $\mu_e=0.39m^2V^{-1}s^{-1}$ and that of hole $\mu_p=0.19m^2V^{-1}s^{-1}$ in an intrinsic semiconductor (Germanium) at 300K. If $n_i=2.4\times 10^{19}m^{-3}$, then the conductivity of the semiconductor is

Options:

2.23 mho/m

1.23 mho/m

12.3 mho/m

0.123 mho/m

Question Number: 85 Question Id: 827347385 Question Type: MCQ

What is the Fermi level with respect to E_i in Germanium at 300K, if $n = 10^{17} cm^{-3}$? Given that $n_i = 2.4 \times 10^{13} cm^{-3}$, $E_{Ge} = 0.7 eV$.

Options:

2.15 eV

4.30eV

0.430eV

0.215eV

Question Number: 86 Question Id: 827347386 Question Type: MCQ

A sample of silicon of thickness $150\mu m$ and doped with 10^{23} phosphorous atoms $/m^3$ is kept in a magnetic field of $0.25Wb/m^2$. The Hall voltage produced across the sample ,if a current of 1mA is passed, will be

Options:

 $1.0416 \mu V$

10.416µV

104.16μV

 $1041.6 \mu V$

Question Number: 87 Question Id: 827347387 Question Type: MCQ

If the critical magnetic fields for a superconducting specimen are $1.35 \times 10^5 A/m$ and $3.95 \times 10^5 A/m$ at 15K and 13K respectively. What is the critical field at 0K?

Options:

 $1.179 \times 10^5 A/m$

 $11.79 \times 10^5 A/m$

 $5.79 \times 10^5 A/m$

 $8.79 \times 10^5 A/m$

Question Number: 88 Question Id: 827347388 Question Type: MCQ

The ratio of nuclear sizes of ²⁷Al and ⁶⁴Cu is approximately **Options:** 7.5 0.75 0.075 0.0075 Question Number: 89 Question Id: 827347389 Question Type: MCQ The nuclear spin of the 3Li⁷ and 6C¹⁴ nuclei are respectively **Options:** half integer and zero integer and half integer integer and zero half integer and half integer Question Number: 90 Question Id: 827347390 Question Type: MCQ

The original three quarks proposed by Gell-Mann and Zweig were labeled u (for 'up'), d (for 'down') and s (for 'strange'). Which one of the following represents a proton?

Options:

uuu

uud

uūd

uds

Question Number: 91 Question Id: 827347391 Question Type: MCQ

88Ra²²⁶ decays by emitting an α -particle. What is the kinetic energy of the released α -particle?

Options:

0.4871MeV

4.871MeV

48.71eV

4.871eV

Question Number: 92 Question Id: 827347392 Question Type: MCQ

In free space neutron decays as:

$$_{0}n^{1} \rightarrow _{1}H^{1} + _{1}e^{0} + []$$

The parenthesis represents a

Options:

Graviton

Photon

Neutrino

Antineutrino

Question Number: 93 Question Id: 827347393 Question Type: MCQ

If 5β - and 3α - particles are emitted by a radioactive nucleus , then the ratio of number of proton to neutrons will be

Options:

$$\frac{Z-1}{A-Z}$$

$$\frac{Z-6}{A-Z-5}$$

$$\frac{Z-1}{A-Z-11}$$

$$\frac{Z}{A-Z-13}$$

Question Number: 94 Question Id: 827347394 Question Type: MCQ

The mean life of a radioactive substance is T. Calculate the number of decays between time 0 and time t, if the number decays per unit time at t = 0 is n?

Options:

$$ne^{-t/T}$$
 ne^{-tT}
 $nT[1-e^{tT}]$
 $n[1-e^{t/T}]$

Question Number: 95 Question Id: 827347395 Question Type: MCQ

Atomic masses of hydrogen and helium are 1.00778 amu and 4.00216 amu respectively. What is the wavelength of radiation produced when 4 atoms of hydrogen are condensed to form an atom of helium?

Options:

$$4.6 \times 10^{-14} m$$

 $4.6 \times 10^{-13} m$
 $4.6 \times 10^{-12} m$
 $4.6 \times 10^{-11} m$

Question Number: 96 Question Id: 827347396 Question Type: MCQ

If radioactive substances A and B have half lives 1hour and 2 hour respectively, then the ratio of disintegration of B to that of A after a lapse of 2hour is given by

Options:

2:1

```
1:3
```

3:1

1:2

Question Number: 97 Question Id: 827347397 Question Type: MCQ

An ionization chamber is charged to a potential of 800V. If its capacity is 40pF, then in passing an α - particle producing 2×10^5 ion pairs, the percentage reduction in charge would be

Options:

 $8.0 \times 10^{-5}\%$

 $10.0 \times 10^{-5}\%$

 $3.2 \times 10^{-4}\%$

 $6.4 \times 10^{-4}\%$

Question Number: 98 Question Id: 827347398 Question Type: MCQ

The 'dead time' of a GM counter is $300\mu s$. If the counting rate is 1000 per minute, find the true counting rate?

Options:

1006.7/min

1005/min

905/min

1205/min

Question Number: 99 Question Id: 827347399 Question Type: MCQ

A pion decays from rest to give a muon of 4MeV energy. What is the energy of the accompanying neutrino?

Options:

29.66MeV

2.966MeV

296.6MeV

0.51MeV

Question Number: 100 Question Id: 827347400 Question Type: MCQ

What is the threshold energy for the nuclear reaction ^{14}N (n,α) ^{11}B in MeV? Given that mass of ^{14}N = 14.007550 amu; mass of neutron = 1.0087987 amu; mass of α -particle = 4.003879 amu; mass of ^{11}B = 11.012811 amu.

Options:

1.52MeV

15.2MeV

0.152MeV

0.0152MeV