A EH (Mains) 2013 30-5-11M ## FOR EVALUATOR'S USE ONLY Sub. Code : 54 Optional Paper Civil Engineering: Paper-II Time: 3 Hours / Maximum Marks: 200 / Total Pages: 32 | | | | | 7. T. | | | | <u> </u> | ioia
aluat | | | | (For Evaluator's Use Only) | |--------------------|---------------|--------|-------|---|----|-----|------|----------|---------------|-------------|------------|------------|--| | |)
} | | RT-A: | | | | RT-B | | | PAF | A | 474250,.00 | Grand Total | | QI | | m
Ž | E.? | AC | ğ | E-1 | E-2 | AC | QN | E-1. | E-2 | AC | PART-A | | 1 | $\overline{}$ | | | | 21 | | | | 33 | ~~~~~~ | | | PART-B: | | 2 | | | | | 22 | | | | 34 | | | | PARTO | | 3 | | | | | 23 | | | | 35 | | <u>-</u> - | | Tötal | | 4 | | | | | 24 | | | | 36 | ··· | | | () Marks- | | 5 | | | | | 25 | | | | 37 | | • | | Final/Total | | 6 | | - | | | 26 | | | | 38 | • | | | // Marks in Words | | 7 | | | | ••• | 27 | | • | | 39 | | | | <u>(</u> | | 8 | | | | | 28 | | | | | | | | | | 9 | | | | | 29 | | | | | | | | • | | 10 | | | | | 30 | i . | | | | | | | Remarks of Evaluator/Chief Evaluator | | 11 | | | | | 31 | | | | | | · | - | The state of s | | 12 | | | | | 32 | | | | | | | | | | 13 | | | | | | | | | | | | | | | 14 | | | | | | | | | | | | -
: | . * . | | 15 | | | | | | | | | | | | | | | 16 | | | · · | | | | | | | | | - | | | 17 | | | | | | | | | | - | | | · | | 18 | | | - | | | | | | | | | : | Remarks of Scrutiniser | | 19 | | · | | | | | | - | • | | | | | | 20 | | | | | | | | | | | | | | | Tota | al | | | | | | | | • | | | | | | Eva
ator
Sig | r's | | | | | | | | | | | | | SEGI 54_II] Note: Attempt all the twenty questions. Each question carries 2 marks. Answer should not exceed 15 words. | 1. | Define Metacentre and Metacentric Heig | ght. | | |----|--|-----------|---------------------------------------| | | | | | | | | | 1." | | | | | | | | | | | | | | | <u>.</u> | 2 | Define Stream function. | • | | | | | | | | | | | 1 2 2 2 2 | | | | | | | | | | | | | 3 | What is drag force ? | | | | | | | | | | | | <u>.</u> | | | | • | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | • | • | | | | | | <u></u> | | | | | | | | | | | | 4 . | Explain Magnetic | declination. | | | | • | | | |-----|--|---------------------------------------|--------------|---------------------------------------|---|---------------------------------------|-------------|--| | | | | | | | | | | | | | | | | | : . | | | | | | | | · · · | | - | | | | | · · · · · · · · · · · · · · · · · · · | | | | 1 | | · | | | | | · · · · · · · · · · · · · · · · · · · | - | | | | | | | | · | | | | · <u>.</u> | • | | | | ,- | | | | 5 | Define the degree | of curve. | | | | | | | | | | | | | | | | 1 | | | · | | | • | | | , . | | | | • | | | ~ | | | | | | - | | | | | | | | _ | | | | | | | | | | - · · · · · · · · · · · · · · · · · · · | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | : | - | | | | | | | | | • | | | | | • | | | | | | | | | | | · | | | | 6 | Convert the follow | ing quadrantal | bearings | into w | vhole circl | e hearings | | | | | (a) N 10° 00' E | | . | | | | | | | · | (b) N 18° 20' W | r comment of the sections | . † | | | ٠ | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | | ··-··································· | | | | | | | | | | _ | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | - | · <u>·-</u> - | | | | | | · . | · | | | | | | | | | | ٠. ۔ | | | | | | | | | | | | | | - | | | | · | | | | | · · · · · · · · · · · · · · · · · · · | | | | | ,, ,, ,, , ,, ,, ,, ,, ,, ,, ,, ,, ,, , | | | | | | | | | 54_ | Ш] | | 4 | | | | | [Contd | | 54_] | <u></u> | | | 5 | . —— | | [Contd | |-------------|--------------------------|---------------------------------------|---------|---------------------------------------|--|---------------------------------------|------------| | | | | | | - 1. | | , | | | | | | | | · · · · · | | | | | · · · · · · · · · · · · · · · · · · · | | | . 4.2 | · · · · · · · · · · · · · · · · · · · | · · · · · | | ·• | | • | | - | • . | · · · · · · · · · · · · · · · · · · · | • | | | | • | | · · · · · · · · · · · · · · · · · · · | The Service of the Control Co | | | | | | | | | | . | | | 9 | Explain Duty. | | | | en bestellt | | | | ^ | T de Se | | | | | | | | | | | | | | | | | | · | · . | | ** * | अब का कि रहतू
- | | •••• | | | | <u> </u> | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | * | · . | | | | | | | | *************************************** | · · · · · · · · · · · · · · · · · · · | ···· | | | D - Gravel | Metar | norphic | | | | • | | | C - Gneiss | | ientary | | | | | | | B - Sandstone | | us rock | | | | | | | A - Granite | | worm | pebble | | | - | | 8 | Match list-I with List-I | List-I | Т | | | | | | | are the Port of | I' a YY . | | | • | | | | | · . | | <u></u> | | | | | | | | | | | | · | | | | - | | | | | | | | | | <u></u> | | | | <u> </u> | - <u>-</u> | | | | | | | · · | · · · · · · · · · · · · · · · · · · · | <u> </u> | | | | · | | | | | · . | | | (b) Soundness | | ; | | ٠ | | | | | (a) Setting time | | | | • | | | | | Name the apparate | us used for to | mowing | repr or e |
CHICHE - | • | | | 0 | Define afflux. | | | | | | |-------------|-----------------------|-------------|-------------|---------------------------------------|---|--| | | | | | | | | | | | | | | | | | | | | | | • | <u>-</u> | | | | | | 1 | Why is Camber provid | led? | | | | ₹ ∫ 1 | | | | , se | | | | | | | | | | | | | | | | .: | · | | | | · · · · · · · · · · · · · · · · · · · | | | | | | · | | | | - | | ł2 | Differentiate between | Bitumen and | l Tar. | • | | • | | | | <u> </u> | | | | | | | | | | | | | | | 13 | what is unit hydrograph? | | • | |-------------|---|-------------|--| | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | 14 | Why disinfection is the most important step in water treatment? | | | | | | | | | · | | | <u>. </u> | | | | : | | | • | | • | | | | | | | | | | | · | | | | | · | | 15 | Describe the equation for Exit - gradient. | | | | | | | | | | | | · · · | | | | | | | | <u>, </u> | | ··· | | | | | | | ,- | | | | | | | | | | 16 | What is seasoning of timber? | | . • | |-------------|--|-----------------------|---------------------------------------| | | | | | | | | · · · | | | | | | | | | | | i | | | | | | | | | | | | | | | | | | | • | | | .17 | Match list-I with list-II: | | | | | List-I | List-II | | | | A - Grit chamber | Zone setting | ; | | | B - Secondary setting tank | Stoke's law | | | | C - Activated sludge process | Aerobic | | | | D - Trickling filter | Contact stabilisation | | | | | | | | | | - | | | | | | | | | | | | | | - The state of | | = u ,i | | | ······································ | | · · | | | | | | | | | | | | 18 | Why gallaric should have arch ro | of in gravity dam ? | | | 10 | why ganano should have aren 10 | or in gravity dain ? | | | | · 8-70-00-0-1 | | | | | | | <u> </u> | | | | | | | | • | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | · · · · · · · · · · · · · | | | | | | [Contd... | | | | | | | • | , | | • | | |-----------|-------------|-------------|-------------|----------|------------|-------|-----|---|---|--| | | | | | ,,,, | | | | | | | |
 | | | | • | | | | | | | | | | | | | | | . , | | | | | |
····· | | | | | | | | - | | | | | | | | | | | | | | | | What are | differe | nt metho | ods of | water so | oftening ? | | | | | | | What are | differe | nt metho | ods of | water so | ftening ? | | | | | | | What are | differe | nt metho | ods of | water so | ftening? | ····· | . * | | | | | What are | differe | nt metho | ods of | water so | ftening? | | | | | | | What are | differe | nt metho | ods of | water so | ftening? | | | | | | | What are | differe | | ods of | water so | ftening? | | | | | | | What are | differe | | ods of | water so | ftening ? | | | | | | | What are | differe | | ods of | water so | ftening ? | | | | | | | What are | differe | | ods of | water so | oftening ? | | | | | | | Note | : | Attempt all t | | question | s. Each | question | carries 5 | 5 marks. | Answer sl | hould | |------|-----------------|---------------------------------------|-------------|-------------|-------------|---------------|-------------|---------------------------------------|---------------------------------------|---------------------| | 21 | Defir | ne and explain | briefly : | | | | | | | | | | (i) | Velocity Pote | | | | | | | | . • | | | (ii) | Stream Funct | | | | | | | • | | | | ` . | | • | | | | • - | | | | | | | | | <u>-</u> | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | • • • | | | | - | · . | | ** ** ** | ···· | | · · · | | | | | | | | : | | | | | | | | | | | | | | | | · | | | | <u> </u> | | | | | | • | | | • | | · | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | . ; | | | | | • | | | | | <u>_</u> | | | | | ··· | | | | | | 22 | Defin
trape | e the term :
zoidal section | Most eco | nomical | section | of chann | el. What | are the | condition | s _, for | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | · · | ····· | | | | | | | | | | | | <u> </u> | | | · · · · · · · · · · · · · · · · · · · | | | | | · · · · · · · · · · · · · · · · · · · | ····- | | ···· | | | <u> </u> | | | | | | | | | | | | | | ·
 | | | | • | _ | | - | | | | | | | | | | <u> </u> | | ··· | | | <u> </u> | * * * * | | | | | · · · | | | <u> </u> | - | · · · | _ | <u> </u> | , . , . | | | | | | | | · . | |------------------|----------------|----------|---------------|---------------------------------------|-----------|------------------| | | | | | | | | | | . a | | | | | | | | | 1 | 11. · <u></u> | | 1 | | | | | · . | |
 | | | | · · . | · | | |
 | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | |
· . | | | | . 7 7 | | | | | | | | | <u> </u> | <u> </u> | | | | | | | | | | | | | | | | | | on process. | Mention n | najor difference | | | between transp | | | on process. | Mention n | najor difference | | | | | | on process. | Mention n | najor difference | | | | | | on process. | Mention n | najor difference | | | | | | on process. | Mention n | | | | | | | on process. | t . | | | | | | | on process. | t . | | | | | | | on process. | t . | | | | | | | on process. | t . | | | | | | | on process. | t . | | | | | | | on process. | t . | | | | | | | on process. | t . | | | | | | | on process. | t . | | || [Contd... | · . | | | | | | |-----------------------|-----------------|-----------------|------------|-----------------|------------------| | | 1 | | | | ı | | · | | | | | | | | | ·
 | | | | | | | | | | | | | | | | | · | | | | · | i | | - | | | | · - | | · . | | | | | | | | | | 26 Write down the dif | ference between | high-rate tric | kling filt | er and low-rate | trickling filter | | | | | | | | | · | | | | | | | | | | | - | | | | | | | | | | | | | | . 10 % | Calculate the population of year 1930 was 25000 and in method. | | _ | | | |---------------------------------------|--|--|--|--|--------------| | | | | | | | | | | ······ | | | | | | . , | | | | · - | | | | | | | | | | | | <u> </u> | | | | | | · ·····- | | | ···· | | | | · | • | | | | | | | | | | | <u></u> | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | | | • | | | | | | rainfall values at these station (a) Determine the optimum | ns are 800, 620 | | respectively. | | | | rainfall values at these static | ons are 800, 620
n number of ra
value of rainf | 0, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | 0, 400 and 540 mm
ingauges in the cate
all
in the catchmen | respectively
chment, if desired
at to 10%. | | | · | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | 0, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | · · · · · · · · · · · · · · · · · · · | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | 0, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | <u>-</u> | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | 0, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | 0, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | D, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | D, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | D, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | D, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | D, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | | rainfall values at these station (a) Determine the optimum the error in the mean | ons are 800, 620
n number of ra
value of rainf | D, 400 and 540 mm
ingauges in the cate
all in the catchmen | respectively
chment, if desired
at to 10%. | | | · - · | | | | | | | | | | | | |--|-------------------------------|---------------------------------|--------------------------|-------------------------------|---------------------------------------|-------------------|------------------|---------------------|-------------------|--------|---------------| | | | | | , | | | .= | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | . | | | . | | | | | | | | | | | | | | | | _ | | | _ | | _ | | | | | | | - ,, . | | | | | | | | | | | | | | | · | | | | | | | • | | | | | | · | <u> </u> | | | | | | · · | | · | | ··- | | <u>.</u> | | - | | - | | | - | - | | | | | · | | | · · | | | | | | | , | | | | | | | | | | | | | | | | | | | | | | 1200 m, | system
750 m a | consists
nd 600 | of the | d diame | es arrang
ters 750 |) mm, (| 600 mr | n and 4 | 450 mi | n resp | ipe: | | 1200 m,
(i) Tra: | system | consists
and 600
he syste | of the
m and
em to | ree pipe
d diame
an equ | es arrang
ters 750
ivalent |) mm, 6
450 mi | 500 mr
n dian | n and 4
neter pi | 150 mi
ipe, an | n resp | ipes | | A piping
1200 m,
(i) Tra
(ii) Det | system
750 m a
nsform t | consists
and 600
he syste | of the
m and
em to | ree pipe
d diame
an equ | es arrang
ters 750
ivalent |) mm, 6
450 mi | 500 mr
n dian | n and 4
neter pi | 150 mi
ipe, an | n resp | ipes | | 1200 m,
(i) Tra: | system
750 m a
nsform t | consists
and 600
he syste | of the
m and
em to | ree pipe
d diame
an equ | es arrang
ters 750
ivalent |) mm, 6
450 mi | 500 mr
n dian | n and 4
neter pi | 150 mi
ipe, an | n resp | ipe | | 1200 m,
(i) Tra: | system
750 m a
nsform t | consists
and 600
he syste | of the
m and
em to | ree pipe
d diame
an equ | es arrang
ters 750
ivalent |) mm, 6
450 mi | 500 mr
n dian | n and 4
neter pi | 150 mi
ipe, an | n resp | ipes | | 1200 m,
(i) Tra: | system
750 m a
nsform t | consists
and 600
he syste | of the
m and
em to | ree pipe
d diame
an equ | es arrang
ters 750
ivalent |) mm, 6
450 mi | 500 mr
n dian | n and 4
neter pi | 150 mi
ipe, an | n resp | ecti | | 1200 m,
(i) Tra: | system
750 m a
nsform t | consists
and 600
he syste | of the
m and
em to | ree pipe
d diame
an equ | es arrang
ters 750
ivalent |) mm, 6
450 mi | 500 mr
n dian | n and 4
neter pi | 150 mi
ipe, an | n resp | ipes | | 1200 m,
(i) Tra: | system
750 m a
nsform t | consists
and 600
he syste | of the
m and
em to | ree pipe
d diame
an equ | es arrang
ters 750
ivalent |) mm, 6
450 mi | 500 mr
n dian | n and 4
neter pi | 150 mi
ipe, an | n resp | ipe | | 1200 m,
(i) Tra: | system
750 m a
nsform t | consists
and 600
he syste | of the
m and
em to | ree pipe
d diame
an equ | es arrang
ters 750
ivalent |) mm, 6
450 mi | 500 mr
n dian | n and 4
neter pi | 150 mi
ipe, an | n resp | ipes | | 1200 m,
(i) Tra: | system
750 m a
nsform t | consists
and 600
he syste | of the
m and
em to | ree pipe
d diame
an equ | es arrang
ters 750
ivalent |) mm, 6
450 mi | 500 mr
n dian | n and 4
neter pi | 150 mi
ipe, an | n resp | ipes | | 1200 m,
(i) Tra: | system
750 m a
nsform t | consists
and 600
he syste | of the
m and
em to | ree pipe
d diame
an equ | es arrang
ters 750
ivalent |) mm, 6
450 mi | 500 mr
n dian | n and 4
neter pi | 150 mi
ipe, an | n resp | ipes | | | reaction time 2.5 seconds and | | |---|---|---| | | · · · · · · · · · · · · · · · · · · · | | | | | | | | , | | | | | · | | | | | | | | | | | | | | | <u></u> | | | | | | | | | | | | | | | - | | · · · · · · · · · · · · · · · · · · · | | 2 | The reduced level of a factor | ry floor is 30.00 m and the staff reading on the floo | | 2 | The reduced level of a factor | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | | 2 | The reduced level of a factor 1.40 m. The staff reading whe | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | | 2 | The reduced level of a factor 1.40 m. The staff reading whe | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | | 2 | The reduced level of a factor 1.40 m. The staff reading whe | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | | 2 | The reduced level of a factor 1.40 m. The staff reading whe | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | | 2 | The reduced level of a factor 1.40 m. The staff reading whe | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | | 2 | The reduced level of a factor 1.40 m. The staff reading whe | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | | 2 | The reduced level of a factor 1.40 m. The staff reading whe | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | | 2 | The reduced level of a factor 1.40 m. The staff reading whe | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | | 2 | The reduced level of a factor 1.40 m. The staff reading whe | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | | 2 | The reduced level of a factor 1.40 m. The staff reading whe | ry floor is 30.00 m and the staff reading on the floo
en held inverted with the bottom touching the T-beam r | ### PART - C Marks : 100 | 33 | Deriv | e the E | Berno | ulli's | equa | ition | and | state | eits | assu | mptic | ons. | | | | | | |----|-------------|---------------|--------------|---------------|---------------|-------------|----------|------------|-------------|-------------|---------|--------------|--------------|-------------|----------|---------------|--------------| | | | | | | | | r | <u></u> | | | | ••• | | | | | | | | • | | | | | | | ·· | ٠, | | | | | | | · · | | <u> </u> | | | | | ··· · | | | | | · | | <u> </u> | | | | <u></u> | | - | <u>.</u> | | | | | | | | | |
| • | <u></u> | - | | | | | | | | | | | | | <u>.</u> | | | | | | <u></u> | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | : | | | - | | | | | . | | | | | | | | | | · | | | | | _ | | | | . | | . | | | | | <u>.</u> | | · | | | | | | | | | | | | | | | | <u>_</u> | | <u> </u> | | | | | | | | | | · | | | | | | | • | | | | | | | - | ,, <u>,</u> , | | | | | | | | | | | | | | • | | | | | _ | | | - | | | | : | - | | | . <u> </u> | , | | | - | | | | | | | | | | . | · · · | · | • | <u> </u> | · | | | | | <u>.</u> | | _ | - | - | | | | | | | . | | - | | · <u> </u> | | | | | | | | ·
 | | • | | | <u> </u> | |----------|---------------------------------------|---------------------------------------|---------------------------------------| | | <u> </u> | | <u> </u> | | <u> </u> | | · | <u> </u> | | | | • | 1 ' | | | | - | • . | | | | · · · · · · · · · · · · · · · · · · · | <u> </u> | | | <u> </u> | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | · | <u> </u> | | | | | | | - | | | | | | | | | | | | | _ _ | · | , | | | | | | | | | | | | | | - | | | | · · · · · · · · · · · · · · · · · · · | | · | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | · <u></u> | | | | | · | | | | - | | | | | | | <u> </u> | | <u> </u> | | | <u> </u> | | | . · | | | | | | | | | | | | |-------------|---------------------------------------|--|---------------|-----|-------------|---------|-------------| | | | | | | | | | | | | and the same AMA in the same of o | • | | - | | • | | | | | | | | | | | | | | | | | | • | | | | | | * · · · · · · · · · · · · · · · · · · · | <u> </u> | | | | | | | | | • | | | | | | And the company of the control th | | | | | | | | | | | | *** | | | | | | | | | | | • • • | | | | | | | | | | | | · | <u> </u> | | | | | - | | | | _ | | | | | | | | | <u> </u> | | | | | | | | | | | • | | | | | | ········· | | | | | | | | | <u> </u> | | | | · | | | | | | • | | | | | | | | | | | | · | | | | | | | | | | - | | | | | | - | - | **: | | | | | | | | | | | | | | | A CALL SALE CONTRACTOR | | | | | | | | | | | · . | | | | | | • | en e | | | | | | | | | The second secon | | | · | | | | | | | | • | | | | | • | | | .: . | | | | • | | | | | · | | | | | | | | again a magain at a magain an ann an a | | | | 4 | | | | · · · · · · · · · · · · · · · · · · · | | | | | • • | | | | | | -7.2 | | | 2 1 1 1 | •• | | | | | | | | _ | | | 34850 F | 28.00 | 11.6 | |---------|-------|------| 54_II] [Contd... | | | | • ** | |----------|---|-----|---------------------------------------| | | • | • | | · · · · · · · · · · · · · · · · · · · | | | | · | | | | | | | | - 15 (A) | | | <u>-</u> | | | | | | | | **** | | • | | | <u></u> | | | | | | | | | 1000 | · · · · · · · · · · · · · · · · · · · | · | | | | · . | | | | | | ` | | | | | · . | • | | <u> </u> | | | ·- · | | | | | | | | | | | | | | ·
 | e se en | · . | | |---------------------------------------|--|--------------|---|--|--------------| | | | _ | | <u>.</u> | · . | | | | - | 20 J. C. Services | · · · · · · · · · · · · · · · · · · · | | | | 1 | | | | <u> </u> | | | | | | | | | | | , | ······································ | | | | | | 200.0 | <u>.</u> | | | | | | | | | | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <u></u> | | | | <u>·</u> | | · · · · · · · · · · · · · · · · · · · | | | | | | | | <u></u> | | | | | <u> </u> | | · | | | | | | | | | | | ······································ | <u> </u> | | · | | | <u> </u> | | <u> </u> | | | - | | | | | | | <u> </u> | | | | | | | <u> </u> | | | | <u>.</u> , | | | | | . | · · · · · · · · · · · · · · · · · · · | | <u></u> - | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | · <u> </u> | | <u> </u> | | <u>.</u> | 21 54_II] | | the second secon | |--|--| | | | | | Apply to the property of the control | | | | | | | | | | | • | | | | | | | Control of the Contro | | ************************************** | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | The state of s | | | | | | | | | the state of s | | | | | | and the second control of | | | Some of the second seco | | | | | | | | | en e | | hd and t | | | ····· | | | · | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | · | | | | en de la companya de
La companya de la co | | · · · · · · · · · · · · · · · · · · · | | | • | and the second section of the second | ling shar gadro **54_II**] 23 37 The offsets (in metre) taken from a chain line to a curved boundary are given below: | Chainage (m) | 0 | 5 | 10 | 15 | 20 | 25 | 35 | 45 | 55 | 65 | |--------------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----| | Offsets(m) | 2.5 | 3.8 | 8.4 | 7.6 | 10.5 | 9.3 | 5.8 | 7.8 | 6.9 | 8.4 | Find the area between chain line, first and last offset and the boundary by Simpson's Rule. | | | | | | — | |-----|-----|---------------------------------------
-------------|---|---| | | | | | | | | · , | | | | | | | | | | | | | | | | J | | | | | | | | | | | | | - | | | | | | | | | | | | | | - | • | | | | | | | , | | | | | | | • | | | | | | . * | · · · · · · · · · · · · · · · · · · · | | - | - | | | | | | | | | · · · · · · | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | · | | | | | | | | • | | | | | |---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | | · | | | <u></u> | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | <u> </u> | | | | • | | | | | | | " | *** | | | | | | | | | | | | | | | | | * | | | | | • | | | | | | - | | · | | · | | | | | | | 11 | | | - | | | | | | | • | | • | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | • | | · · · · · · · · · · · · · · · · · · · | | | | | · | | | | | | | | | | | | | · | | | | | | | | | | | | | · | | | | | | | | • | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | ··· | | | | | | | | | | | | | | | | | | · | | | | | | | | | | <u> </u> | | | | | | | | | | | • | | | | | | | | | <u> </u> | | | | | | | | | | | | <u> </u> | <u> </u> | | - | | | | | | | | | | | | · | | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | | | | | | • | | <u> </u> | · · · | | · · · · · · · · · · · · · · · · · · · | | | | • | | • | | • | | | | · · · · · · · · · · · · · · · · · · · | | ·· | | | | | | | | • | | | • | | | | | | | <u></u> | | <u> </u> | | | | | 2 | 200 m. Ca
puper-eleva | n speed of a halculate the sup-
tion of 0.07 is
rizontal curve. | er-elevation
not to be | n needed
exceeded | to mair
i, calcula | ntain this
ate the r | s speed. If
naximum a | the mallowable | axımu
e spe | |---|--------------------------|---|---------------------------------------|---------------------------------------|-----------------------|-------------------------|--------------------------|----------------|----------------| | | | | | | | | | | | | | | s and the second second | | | | | | | <u>.</u> | | | · | <u> </u> | ···· | <u></u> , | | <u> </u> | | | · | | | <u> </u> | <u></u> | - | | <u> </u> | | <u>.</u> | | | ·
 | | | | | _ _ . | | | | | · | -, - | · • | | · · · · · · | . <u></u> | | | · | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | 4.0 | | | | | | <u> </u> | **** | | · · · · · · · · | · · | | | | | | · <u> </u> | \$21-44 3 00 () = 2 | | | <u></u> | | | · · · · · · | | | | | | | | | ·. | | | | | | | <u> </u> | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | | . | | | | | | | | | | | | · | | | | | | | | | | <u> </u> | | | | : | v(1), (1) | | | |---|----------------|-------------------|---------------------------------------|--|--|--|--|---| | | · | | | | | en eta elektrikaria bilandaria.
Bilandaria bilandaria | <u> </u> | | | | | | · | | <u> </u> | AT THE WAY TO BE | | | | | * | • | , , , , , , , , , , , , , , , , , , , | | • • | A CONTRACTOR OF THE | 1 | | | | | · | | | | | <u></u> | | | - | | :** | - | | <u></u> | | · | | | | | · · · | | | , | | | | | · | | | 1.5 | · m. · | | Section 1 | | | | | | | | | | | | | | | | | | | | The second secon | | | | | _ | | | - | <u>.=</u> . | | | | | | | | | | | | | | | | | et race | | -81 | | and the same of th | | | | | | | · · · · · · · · · · · · · · · · · · · | - · · · · · · · · · · · · · · · · · · · | • | - | ···· | | | | | | | | | | | | | | | | | - | | en e | | | | | | | | | | | | | | | · . | | | .• | | | | _ | | | . , | | | | | | | _ | | - | | · · · · · · · · · | | | | | | | | | | · | | ······································ | | | _ | | | | | | | | ······································ | The second secon | ······································ | | | | | - | | | | | | _ | | | | | | · · · · · · · · · · · · · · · · · · · | | | | _ | | C = | 10 <i>kPa</i> , | $\phi = 38^{\circ}$, $\gamma = 19 \text{ kN/s}$ | \mathbf{m}^3 , $N_c = 6$ | 31.35, | $N_q = 4$ | 8.93, | $N_{\gamma} = 74$ | 4.03 | and | |--------------|-----------------|--|----------------------------|-------------|-----------|-------------|-------------------|-------------|---------------| | - • | | ne water table is at t | | | | | | | | | | | | | . • | • | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | · · . | | | | | | <u> </u> | | | | | | | | | | | <u>-: -:</u> | | 451 | · | | | | | | | | | | | | | | | | | | | | | 11 - 1 | | | | | | | | | | | | | • • • | | | | | | | . | | | | | ····· | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | <u> </u> | ,, | | <u>.</u> | <u>.</u> | | | | | | | | <u> </u> | | | | | _ | | | | | | | | | | | | | · · | | | | | | | • | | | · | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | <u></u> | | | | | | | | | | | | | | | | | | | ·
 | · · · | | | | | · . | • | | | | | | - | | | | | | | | | · . | | | | | | | | | | | - | | • | | | | 4_II] | • . | <u> </u> | 28 | | | | | [Co: | v, 4 el | | | | · · | | | |-------------|---------------------------------------|---------------------------------------
--|--------------| | | | | | All Har | | | 1 | · · · · · · · · · · · · · · · · · · · | Marian | | | | · · · · · · · · · · · · · · · · · · · | • | e dana muu oo | | | | - | , | | | | | · · · · · · · · · · · · · · · · · · · | - | | | | | | | | | | | | . | | | | | <u> </u> | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | <u>, , , , </u> | ···· | | · | | | 5 1 10 N | | | • | | | And a complete one and other has a later on the analysis of th | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | <u> </u> | · | · | | : | · · · · · · · · · · · · · · · · · · · | · | e e mander, com e econo | | | | | | response in the control of contr | | | | | | 4 | | | | | | | • | [Contd., ### SPACE FOR ROUGH WORK - 54_II] MINIMUM [Contd #### SPACE FOR ROUGH WORK