-500

पुस्तिका में पृष्ठों की संख्या—16
No. of pages in Booklet -16
पुस्तिका में प्रश्नों की संख्या—100
No. of Questions in Booklet -100
Subject Code — 02
विषय / SUBJECT : Civil

Engineering

NEAP-81

PAPER-II

Question Paper Booklet No. प्रथन-पत्र पुस्तिका संख्या 2007697

अधिकतम अंक : 200 Maximum Marks: 200

समय : 2.00 घण्टे Time: 2.00 Hours

प्रश्न-पत्र पुस्तिका एवं उत्तर पत्रक के पेपर सील / पॉलिथीन बैग को खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुस्तिका पर वही प्रश्न-पत्र पुस्तिका संख्या अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई भिन्नता हो तो वीक्षक से दूसरा प्रश्न-पत्र प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।

The candidate should ensure that Question Paper Booklet No. of the Question Paper Booklet and Answer Sheet must be same after opening the Paper Seal/ polythene bag. In case they are different, a candidate must obtain another Question Paper from the Invigilator. Candidate himself shall be responsible for ensuring this.

परीक्षार्थियों के लिए निर्देश

- 1. सभी प्रश्नों के उत्तर दीजिए।
- 2. सभी प्रश्नों के अंक समान हैं।
- 3. प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।
- 4. एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा।
- 5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया है। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बबल को उत्तर पत्रक पर नीले बॉल प्वॉइंट पेन से गहरा करना है।
- 6. OMR उत्तर पत्रक इस परीक्षा पुस्तिका के साथ रखा है। जब आपको परीक्षा पुस्तिका खोलने को कहा जाए, तो उत्तर पत्रक निकाल कर ध्यान से केवल नीले बॉल प्वॉइंट पेन से विवरण भरें। OMR उत्तर पत्रक पर प्रश्न-पत्र पुस्तिका संख्या ध्यानपूर्वक भरें।
- 7. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 माग काटा जायेगा। (गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है। किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।)
- 8. मोबाइल फोन अथवा इलेक्ट्रॉनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित है। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है, तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानीपूर्वक सही भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से काटे जा सकते हैं।
- 10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की त्रुटि हो तो प्रश्न के हिन्दी तथा अंग्रेजी रूपान्तरों में से अंग्रेजी रूपान्तर मान्य होगा।

चेतावनी: अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराते हुए विविध नियमों—प्रावधानों के तहत कार्यवाही की जाएगी। साथ ही विभाग ऐसे अभ्यर्थी को भविष्य में होने वाली विभाग की समस्त परीक्षाओं से विवर्जित कर सकता है।

INSTRUCTIONS FOR CANDIDATES

- Answer all questions.
- 2. All questions carry equal marks.
- 3. Only one answer is to be given for each question.
- If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. The OMR Answer Sheet is kept with this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully with blue ball point pen only. Please fill the Question Paper Booklet no. on the OMR Answer Sheet carefully.
- 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable materials with him/her will be strictly dealt as per rules.
- Please correctly fill your Roll Number in O.M.R. Sheet.
 Marks can be deducted for filling wrong or incomplete Roll Number.
- If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorized material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted. Department may also debar him/her permanently from all future examinations. s.

इस परीक्षा पुस्तिका को तब तक न खोलें जब तक कहा न जाए। Do not open this Test Booklet until you are asked to do so.

CIVIL ENGINEERING

1.	A pris	matic bar when subjected to pure bending a	ssume	es the shape of-
	(1)	Catenary	(2)	Cubic parabola
	(3)	Quadratic parabola	(4)	Arc of circle
2.	Most	common method of pre-stressing used for fa	actory	production is-
	(1)	Long line method	(2)	Freyssinet system
	(3)	Magnel-Blaton system	(4)	Lee-McCall system
3.	The d	rain which is provided parallel to roadway to	inter	cept and divert the water from hill slope
	is -			
	(1)	Sloping drain	(2)	Catch water drain
	(3)	Side drain	(4)	Cross drain
4.	A traf	ffic rotary is justified where-		
	(1)	Number of intersecting roads is between	(2)	Space is limited and costly
	(2)	8 & 10 When traffic volume is > 6000	(4)	When traffic volume is having lowest
	(3)	vehicles/hr	(-)	limit of 500 vehicles per hour
5.	Conto	our lines can unite only in one condition, that	at is-	
	(1)	Cave	(2)	Valley
	(3)	Vertical cliff	(4)	River bed
6.	Tach	eometry is adopted where-		
	(1)	Too many curves exists at the border	(2)	Obstacles, undulation exists
	(3)	Limitation of space exists	(4)	None of the above
7.	.70%	index of wetness means-	*	
	(1)	Rain excess of 30%	(2)	Rain deficiency of 30%
	(3)	Rain deficiency of 70%	(4)	None of the above
8.	Meth	nemoglobinemia or blue baby is caused due	to-	
	(1)	Chlorides	(2)	Fluorides
	(3)	Nitrates	(4)	Sulphides
9.	Lacu	strine soils are obtained from-		
	(1)	River	(2)	Glaciers
	(3)	Sea	(4)	Lake beds
	A			
[02	子 [Page 2 of 16	5	

10.	A pr	ismatic member with area of cross section	'A' is	s subjected to a tensile load 'P', then the
		mum shear stress and its inclination with th		
	(1)	P/A and 60°	(2)	P/2A and 45°
	(3)	P/2A and 60°	(4)	P/A and 45°
11.	The p	phenomenon of decreased resistance of mat	erial d	lue to reversal of stress is called-
	(1)	Creep	(2)	Fatigue
	(3)	Resilience	(4)	Plasticity
12.	A bul	ll nose brick is not used for-		
	(1)	Rounding off sharp corners	(2)	Pillars
	(3)	Decoration purpose	(4)	Arches
13.	Bulle	t proof glass is made of thick glass sheet sa	ndwic	hed by a layer of-
	(1)	Steel	(2)	Stainless steel
	(3)	Vinyl plastic	(4)	Chromium plate
14.	The n	nost suitable equipment for compacting cla	yey so	ils is a-
	(1)	Smooth wheeled roller	(2)	Pneumatic tyred roller
	(3)	Sheeps foot roller	(4)	Vibrator
15.	RC –	2; MC-2 and SC-2 correspond to-		
	(1)	Same viscosity	(2)	Viscosity in increasing order from
				RC-2 to SC-2
	(3)	Viscosity in decreasing order from	(4)	None of the above
		RC-2 to SC-2		
16.	The sl	hape factor of an isosceles triangle should b	e-	
	(1)	1.5	(2)	1.7
	(3)	2.34	(4)	2
17.	For a f	floating body to be in stable equilibrium, its	meta	center should be-
	(1)	Below the center of gravity	(2)	Below the center of buoyancy
	(3)	Above the center of buoyancy	(4)	Above the center of gravity
18.	As per	IS:800, the maximum bending moment of	purlir	ı is-
	. (1)	WL/6	(2)	WL/8
	(3)	WL/4	(4)	WL/10
	Where	-W = udl; L = Span of purlin		

19.	The st	andard meridian of India is-		
2	(1) (3)	35° 67°30'	(2) (4)	82°30' 120°
20.	The w	indow provided on the sloping roof of a bu	ilding	is called-
	(1)	Dormer window	(2)	Bay window
	(3)	Sky light window	(4)	Glazed window
21.	A que	en closer is a-	20	
	(1)	Brick laid with its length parallel to the face or direction of wall.	(2)	Brick laid with its breadth parallel t the face or direction of wall.
	(3)	Brick having the same length and depth as the other bricks but half the breadth.	(4)	Brick with half the width at one en and full width at the other.
22.	Resin	s are-		
	(1)	Not soluble in water	(2)	Soluble in spirit
	(3)	Used in Varnishes	(4)	Left behind on evaporation of oil
23.	Steps	which are normally triangular in shape are	called	[- ·
	(1)	Angular steps	(2)	Radial steps
	(3)	Winders	(4)	Spiral steps
24.	A bea	am of uniform strength contains same-		
	(1)	Bending Moment	(2)	Bending stress
	(3)	Deflection	(4)	Stiffness
25.	Cons	ider the following statements:		
	The c	coefficient of permeability 'K' depends upo	n-	
	(i)	Void ratio of the soil		
	(ii) (iii)	Duration of flow Diameter of the soil grain		
	(iv)	Shape of the particle		
		ch of the above statement is correct?		a a a
	(1)	i, ii, iii, iv	(2)	ii & iii only
	(3)	i, iii & iv only	(4)	iii & iv only
26.	The	windblown soils are associated with-		
	(1)	Alluvial soil	(2)	Lateritic soil
25	(3)	Loess	(4)	Black Cotton soil
27.		tendency of a stone is, to split along-	(2)	Evantura
	(1)	Texture	(2)	Fracture
	(3)	Cleavage	(4)	Structure
	A	- · · · · · · · · · · · · · · · · · · ·	10	
FAA 7		Daga 4 of 16		

28.	The is ab	load carrying capacity of a helically reinfo out-	orced co	lumn as compared to that of a tied column
	(1)	5% less	(2)	10% less
	(3)	5% more	(4)	10% more
29.	The	vertical member used in door frame is cal	22 (2	
	(1)	Post	(2)	Hanging style
	(3)	Sill	(4)	Rail
30.	The p	property of the ingredients to separate from	20.00	
	(1)	Segregation	(2)	Compaction
	(3)	Shrinkage	(4)	Bulking
31.	When	n (h) is the difference in heights betwee	12-80 (48)	
	corre	ction for the slope required is-		tengen (e) then the
	(1)	h/ℓ	(2)	h^2/ℓ
22	(3)	$h^2/20$	(4)	h/2ℓ
32.		irst observation taken on turning point is-	0.0	
	(1)	Back sight	(2)	Foresight
	(3)	Intermediate sight	(4)	None of the above
33.	A sur	vey done to understand the heavenly bod	ies is kn	own as-
	(1)	Celestial survey	(2)	Astronomical survey
	(3)	Photographic survey	(4)	Aerial survey
34.	In Inc	lia which technology is highly adopted fo	r fluorid	e removal?
	(1)	Aeration	(2)	Lime soda technique
	(3)	Nalgonda Method	(4)	Ozonation
35.	For pi	pes, turbulent flow occurs when Reynold	ls numbe	er is-
	(1)	Less than 2000	(2)	Between 2000 and 4000
	(3)	More than 4000	(4)	None of the above
36.	An iso	obar is a line which connects all points be	low the	ground surface at which-
	(1)	The local ground elevation is same	(2)	The settlement is same
	(3)	The vertical stress is same	(4)	The ground elevation is varying
37.	Undis	turbed tests are required for conducting-	el st	<i></i>
	(1)	Hydrometer Test	(2)	Shrinkage Limit Test
	. (3)	Consolidation Test	(4)	Specific Gravity Test
			, ,	1 1 1

38.	The ea	rth pressure behind a bridge abu			
	(1)	Active	(2)		Passive
	(3)	At rest	(4)		Constant always and everywhere
39.	Bulkin	ng of sand is maximum if moistur	re content is at	oou	•
	(1)	2%	(2)	Ĺ	4%
	(3)	5%	(4))	10%
40.	The di	iameter of needle in Vicat appara	tus for initial s	sett	ing time is-
	(1)	0.5 mm	(2))	1 mm
	(3)	5 mm	(4))	10 mm
41.	Tie ba	ers in CC roads are at-			
	(1)	Expansion joints	(2))	Contraction joints
	(3)	Warping joints	(4		Longitudinal joints
42.	It is a	common practice to design a hig	ghway to accor	nn	nodate traffic volume corresponding to-
	(1)	30 th hour	(2		Peak hour
	(3)	ADT	(4)	15-min peak hour
43.		wo main gases obtained from an	aerobic decom	ро	sition are-
	(1)	Ammonia and CO ₂	(2		CO ₂ & CH ₄
	(3)	CH ₄ & Hydrogen sulphide	(4	1)	Ammonia and CH ₄
44.		er 1S:456 the value of fy at outern	nost tension fil	ber	is-
	(1)	$0.02 + (f_y/1.5 E_s)$		2)	$0.0035 + (f_y/1.5E_s)$
	(3)	$0.002 + (f_y/1.15E_s)$	(4	4)	$0.002 + (f_y/1.5E_s)$
45.	The l	R.L. of the point 'A' which is on oresight reading on the point 'B'	floor is 100m which is on c	an eil	d back sight reading on 'A' is 2.445m. If ing is 2.745m, the R.L. of point 'B' will
	be-				
	(1)	94.80 m	(2	2)	99.71 m
	(3)	100.29 m	. (4)	105.20 m
46.	Hyd	raulic lime is obtained by-			
	(1)	Fly ash	(2)	Burning of kankar
	(3)	Red stone	. (4)	Calcination of pure clay
47.	Exce	ess of silica in the clay-			
	(1)	Makes the brick brittle & wea	ık ((2)	Changes the colour of brick from red to yellow
	(3)	Improves impermeability and of the brick	d durability ((4)	Makes the brick crack and wrap on drying
13	A				
[02] 함		Page 6 of 16		

48.	Neop	rene is	suitable	e for use	e in-						
	(1)	Joine	ry work				(2)	Floors of	dance halls		
	(3)	Beari	ing of b	ridges			(4)	Hard duty	rubber coa	ating of flo	ors
49.	In a	transit	theodo	olite, ar	nd incid	ental erro	or due to	eccentricit	y of Verr	niers is pr	imarily
	encou	intered	by-								
	(1)	Read	ing both	the ve	rniers		(2)	Reading d	ifferent pa	rt of main s	scale
	(3)	Read	ing righ	t and le	ft faces		(4)	Taking bo	th right sw	ing reading	3S
50.	If a ra	dius of	f curvat	ure of a	simple	curve is 2	29.2 m, th	en its degre	e of curvat	ure is-	
	(1)	2°					(2)	3°	*		
	(3)	5°	*				(4)	10°			
51.	The R	Reduced	d Levels	(RLs)	of the p	oints P an	d Q are +	49.600 m aı	nd + 51. 87	0 m respec	tively.
	Dista	nce PQ	is 20 n	n. The o	distance	(in m fro	m P) at w	hich the +5	1.00 m cor	ntour cuts t	he line
	PQ is	-					1				
	(1)	15.00	m				(2)	12.33 m			
	(3)	3.52 1	n				(4)	2.27 m			
52.	List	I lists	tools/i	nstrume	ents wh	ile List	II lists tl	he method	of surve	ying. Mate	ch the
	tool/ii	nstrume	ent with	the cor	respond	ing metho	od of surve	eying.			8
		List I	æ			List II					
	P. Q. R. S.			R	(i) (ii) (iii) (iv) S	Levellir Plane ta	urveying ng ble survey lite survey	_			
	(1)	(iii)	(ii)	(i)	(iv)						
	(2)	(ii)	(iv)	(iii)	(i)		52				
	(3)	(i)	(ii)	(iv)	(iii)						
	(4)	(iii)	(i)	(ii)	(iv)						
[02]	슘			*		Page 7 of	16				

53.	Match list I (Test)) with list II	(property) and	I select the correct a	nswer-

(i) (ii)

(iii)

(iv)

List I A. Proctor test B. Vane test C. Penetration test Hydrometer test D. A В C D (1) (ii) (iv) (i) (iii) (i) (iii) **(2)** (iv) (ii) (i) (3)(iv) (ii) (iii) (i) (4) (ii) (iv) (iii)

54. A footing of $2m \times 1m$ exerts a uniform pressure of 150 kN/m^2 on the soil. Assuming a load dispersion of 2 vertical to 1 horizontal, the average vertical stress (kN/m^2) at 1.0 m below the footing is-

List II

Grain size analysis

Shear strength

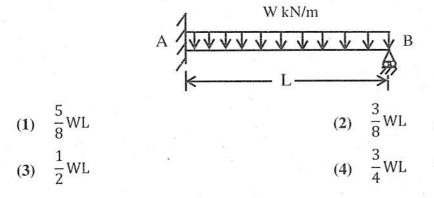
Compaction

Bearing capacity

 (1) 75
 (2) 80

 (3) 50
 (4) 100

55. An unsupported excavation is made to the maximum possible depth in a clay soil having γ_t =18 kN/m³, C=100 kN/m², ϕ =30°. The active earth pressure, according to Rankin's theory, at the base level of excavation is-


(1) 115.47 kN/m^2 (2) 54.36 kN/m^2 (3) 27.18 kN/m^2 (4) 13.25 kN/m^2

56. For a given shear force across a symmetrical 'I' section, the intensity of shear stress is maximum at the-

(1) junction of the flange and the web, but on (2) junction of the flange and the web, web.but on the flange.

(3) centroid of the section (4) extreme fibres

57. In the propped cantilever beam carrying a uniformly distributed load of WN/m, shown in the following figure, the reaction at the support B is-

- **58.** Two beams of same material have equal cross-sectional area. If one beam has square cross-section and the other has circular cross-section-
 - (1) Both the beam will be equally strong
- (2) Circular section will be stronger
- (3) Square section will be stronger
- (4) Strength depends
- n loading
- condition
- **59.** For the plane frame as shown in the figure, the degree of kinematic indeterminacy neglecting axial deformation, is-

(1) 3

(2) 5

(3) 7

- (4) 9
- **60.** The intensity of u.d.l. which, when it acts over the entire span of 1m of a cantilever beam of rectangular cross-section of width of 100 mm and depth 200 m, would produce a maximum shear stress of 1.5 N/mm², is-
 - (1) 30 kN/m

(2) 26.6 kN/m

(3) 20 kN/m

- (4) 36.6 kN/m
- 61. The bulk modulus of K, modulus of elasticity E and Poisson's ratio is $\frac{1}{m}$, then which of the following is true-
 - (1) $E = 3K\left(1 + \frac{2}{m}\right)$

 $(2) \quad E = 3K\left(1 - \frac{1}{m}\right)$

 $(3) \quad E = 3K\left(1 - \frac{2}{m}\right)$

- (4) $E = 3K\left(1 + \frac{1}{m}\right)$
- **62.** Consider the following statements-
 - I- The economic spacing of a roof truss depends on cost of purlins and cost of roof covering.
 - II- Purlins provided over roof trusses are designed as a continuous as per IS:800.
 - III- Bearing stiffeners are provided in a plate girder to prevent web buckling.

The correct statements are-

(1) I, II and III are correct

(2) Only I and III are correct

(3) II and III are correct

(4) I and II are correct

the web is used as a top face ng in (1) and (2) sign of angle iron purlins, who onent acting normal to the sidered ending stress is not reduced aining wall, the main reinforce		Strongest if the web is used as a bottom face Not possible to state which of the above statement is correct e of the following assumption would not Bending moment about the minor axis is considered
ng in (1) and (2) sign of angle iron purlins, who onent acting normal to the sidered ending stress is not reduced	(4) ich one (2)	bottom face Not possible to state which of the above statement is correct e of the following assumption would not Bending moment about the minor
sign of angle iron purlins, who	ich one	above statement is correct e of the following assumption would not Bending moment about the minor
onent acting normal to the sidered ending stress is not reduced	(2)	Bending moment about the minor
sidered ending stress is not reduced		
sidered ending stress is not reduced		
	(4)	unio lo colloideled
nining wall, the main reinforce		Slope of the roof should not exceed 30°
and a second 🚅 a second control of the control of	ement	is provided on the-
e in front counterfort e in front counterfort e in back counterfort e in back counterfort is-		
	(2)	(ii) and (iii)
	(4)	(iii) and (iv)
pedestal of M35 grade, the n	naximi	um bearing pressure at the base is found
nd the depth of footing, if the	projec	tion beyond the column is 300 mm.
	(2)	2.6 m
	(4)	1.9 m
slab, the limiting deflection of	of the s	slab is-
function of the long span	(2)	Primarily a function of the short span
t of long or short spans	(4)	Dependent on both long and short
		spans
l in flat slabs to resist-		
	(2)	bending moment
	(4)	shear
		(2)

			6 0	
69.	Asser	tion A: According to IS: 456; over reinforce	ed sec	ctions are not permitted.
		on R: There is ductile failure of over reinfor		
		t your answer based on the coding system g		
	(1)	Both A and R are true and R is the correct		Both A and R are true and R is not the
		explanation of A		correct explanation of A
	(3)	A is true but R is false	(4)	A is false but R is true
70.	The n	naximum diameter that a capillary tube can	have t	to ensure that a capillary rise of atleast 6
	mm is	s achieved when the tube is dipped into a be	ody of	liquid with surface tension = 0.08 N/m
•	and d	ensity = 900 kg/m^3 , is-		
	(1)	3 mm	(2)	6 mm
	(3)	5 mm	(4)	8 mm
71.	A hor	izontal water jet with a velocity of 10 m/s ar	nd cro	ss-sectional area of 10 mm ² strikes a flat
	plate	held normal to the flow direction. The dens	sity of	water is 1000 kg/m ³ . The total force on
	the pl	ate due to the jet is-		
	(1)	100 N	(2)	10 N
	(3)	0.1 N	(4)	1 N
72.	A per	son standing on the bank of a canal drops a	stone	on the water surface. He notices that the
		bances on the water surface is not travelli	ng up	stream. This is because the flow in the
	canal			
	(1)	Sub-critical	(2)	Super-critical
	(3)	Steady	(4)	Uniform
73.		pezoidal channel is 10.0 m wide at the base a		
		ed slope is 0.002. The channel is lined with		th concrete (Manning's $N = 0.012$). The
		ulic radius (in m) fcr a depth of flow of 3 m		
	(1)	20.0	(2)	3.5
	(3)	3.0	(4)	2.1
74.		chment area of 60 ha has a run off coefficie		
		on longer than the time of concentration o	ccurs	in the catchment, then what is the peak
	discha		(2)	2 5 310
	(1)	2.0 m ³ /s 4.5 m ³ /s	(2)	$3.5 \text{ m}^3/\text{s}$
	(3)	7.J III /S	(4)	$2.5 \text{ m}^3/\text{s}$
[02]	숍	Page 11 of 16		
£3				

75.	A 8 hc	ours unit hydro	graph of	catchm	nent is triangu	lar in s	shape with a base width of 64 hours and
	peak o	ordinate of 20	m³/s. The	e equili	brium dischar	ge of	S-curve obtained by using this 8 hours
	unit h	ydrograph is-					
	(1)	$60 \text{ m}^3/\text{s}$				(2)	$80 \text{ m}^3\text{/s}$
	(3)	$100 \text{ m}^3/\text{s}$				(4)	800 m ³ /s
76.	Khosl	a's formula fo	r assessii	ng press	sure distributi	on unc	der weir floors are based on-
	(1)	Potential flo	w in per	meable	layers just	(2)	Boundary layer flow with pressure
		beneath the f	loors				drop longitudinally
	(3)	Conformal t	ransform	ation (of potential	(4)	Simplification of 3-D flow
		flow into the	W plane				
77.	Force	considered for	or the an	alysis	of an elemen	itary į	profile of a gravity dam under empty
		oir condition a			,		
	(1)	Uplift pressu	re	4	* *	(2)	Water pressure
	(3)	Self-weight				(4)	Wave pressure
78.			cteristics	pertair	n to the sand f		used in the water industry:
	I.	Filtration rat		- F			
	II.				n in one run is	24 to	72 hours
	III.	Operation co			- 14	1.1	CI.
		of the above	characte	ristics p	pertain to slow		
	(1)	I, II and III				(2)	I and II
	(3)	II and III				(4)	I and III
79.	Match	the following	<u>-</u>				
	74)	List I		C)	List II	لدمان	
	(A) (B)	Hardness Chlorine		(i) (ii)	Winkler me EDTA meth		B 1
	(C)	DO		(iii)	Orthotolidir		
	(D)	Chloride		(iv)	Mohr metho	od	
	Codes						
		(A) (B)	(C)	(D)	P R on		
	(1)	(ii) (iii)	· (i)	(iv)			
	(2)	(ii) (iv)	(i)	(iii)			
	(3)	(i) (iii)	(ii)	(iv)		*	*
	(4)	(i) (iv)	(ii)	(iii)			
[02]	슘				Page 12 of 16		
[04]	_				1 age 12 01 10		

80.	Consi	der the following impurities-		
	(i)	CO ₂ and H ₂ S		
	(ii)	Finely divided suspended matter		
	(iii)	Disease causing bacteria		
	(iv)	Excess alkalinity		
	The c	orrect sequence of the removal of these imp	ouritie	s in a water treatment plant is-
	(1)	(i) (ii) (iii) (iv)	(2)	(i) (iv) (iii) (ii)
	(3)	(i) (iv) (ii) (iii)	(4)	(iv) (i) (iii) (ii)
81.	A was	ste water sample of 2 ml is made upto 300	ml in	BOD bottle with distilled water. Initial
	DO of	f the sample is 8 mg/l and after 5 days it is	2 mg/	.What is its BOD?
	(1)	894 mg/l	(2)	900 mg/l
	(3)	300 mg/ℓ	(4)	1200 mg/ℓ
82.	Which	n of the following sewage treatment method	s has i	nherent problems of odour, ponding and
	fly nu	isance?		
	(1)	UASB system	(2)	Activated sludge process
	(3)	Trickling filters	(4)	Stabilization ponds
83.	The w	orking conditions in Imhoff tanks are-		
101	(1)	aerobic only	(2)	anaerobic only
	(3)	aerobic in lower compartment and	(4)	anaerobic in lower compartment and
		anaerobic in upper compartment	7.6	aerobic in upper compartment
84.	For a	road with camber of 3% and the design sp	peed o	of 80 km/hr, the minimum radius of the
	curve	beyond which no super-elevation is needed	l is-	
	(1)	1680 m	(2)	944 m
	(3)	406 m	(4)	280 m
85.	As pe	r IRC guidelines for designing flexible pay	vemen	ts by CBR method, the load parameter
	requir			
	(1)	number of commercial vehicles per day	(2)	cumulative standard axles in msa
	(3)	equivalent single axle load	(4)	number of vehicles (all types) during
				design life

86.	The ge	eneral requirement in constructing a reinforce	ced co	oncrete road is to place a single layer of
	reinfo	rcement-		
	(1)	Near the bottom of the slab	(2)	Near the top of the slab
	(3)	At the middle	(4)	Equally distributed at the top and the
				bottom
87.	The P	ensky-Martens apparatus are used for condu	acting	the test on bitumen for testing-
	(1)	Fire point	(2)	Ductility
	(3)	Viscosity	(4)	Penetration
88.	The d	ilatancy correction in Standard Penetration	Test (SPT) is given by-
	(1)	N' = 15 + (N - 15)	(2)	$N' = 15 + \frac{1}{2}(N - 15)$
	(3)	$N' = 15 + \frac{1}{2}(N - 10)$	(4)	N' = 15 + (N - 10)
89.	The c	onditions required to be satisfied for the ana	ılysis	of indeterminate structure are-
	(1)	Equilibrium	(2)	Compatibility
	(3)	Force-displacement relationship	(4)	All of these
90.	In slo	pe deflection method, the joints are conside	red ri	gid when-
	(1)	no change in value of the angles between	(2)	90° angle between the members in
7		members		frame
	(3)	180° angle between the members in	(4)	all of these
		beams		
91.	Maxv	well's reciprocal theorem in structural analy	sis-	
	(1)	is true for any structure obeying Hooke's	(2)	can be applied to the rotations caused
		law .	•	by flexure, shear or torsion
	(3)	is useful in analyzing indeterminate	(4)	all of these
		structures		
92.	As pe	er IS: 456-2000, the final deflection due to	all loa	ads including the effects of temperature,
	creep	and shrinkage and measured from the as-ca	ast lev	rel of the supports of floors, roofs and all
	other	horizontal members, should not normally e	xceed	
	(1)	span/250.	(2)	span/350
	(3)	20 mm	(4)	Both (2) and (3)
	21	8		
[02]	住	Page 14 of 10	6	

93.	For the	he overall cost of roof trusses to be minimur	n, the	cost of trusses should be equal to-	
	(1)	twice the cost of purlins plus the cost of roof coverings	(2)	twice the cost of roof coverings plus the cost of purlins	
	(3)	the cost of roof coverings plus the cost of purlins	(4)	twice the cost of purlins plus twice the cost of roof coverings	
94.	Intern	Intermediate vertical stiffeners in plate girders are used to-			
	(1)	Prevent local buckling of the web	(2)	Prevent local buckling of the flange	
	(3)	Prevent excessive deflection	(4)	Increase the bearing strength of the	
				web	
95.	The o	detention time for a water sedimentation ta	ınk -us	sing coagulated raw supplies may vary	
	betwe	een-			
	(1)	1 to 2 hours	(2)	2 to 4 hours	
2.0	(3)	4 to 8 hours	(4)	16 to 24 hours	
96.	The overflowing sheet of water on a weir is called-				
	(1)	Head	(2)	Nappe.	
	(3)	Upstream	(4)	Crest	
97.	7. For a transition curve, the shape recommended by IRC is-				
	(1)	Spiral	(2)	Lemniscate	
	(3)	Cubic parabola	(4)	All of these	
98.	Asph	alt concrete is a mix comprising of-			
	(1)	Fine aggregate, mineral filler and	(2)	Fine aggregate and bitumen	
		bitumen			
	(3)	Coarse aggregate, fine aggregate, mineral	(4)	Coarse aggregate, mineral filler and	
		filler and bitumen		bitumen	
99.	On a	right angled road intersection with two way	traffic	, the total number of conflict points are-	
	(1)	32	(2)	16	
	(3)	24	(4)	4	
100. The shape of the STOP sign according to IRC: 67-2001 is-				is-	
	(1)	Circular	(2)	Triangular	
	(3)	Octagonal	(4)	Rectangular	
		XX			
	A				

[02] 曾

Space for Rough Work

nedinar