105005

कोड / Code : **55**

5

5

5

विषय / Subject : Asst. Elect. Insp. (EID)

पुरितका में पृष्ठों की संख्या / Number of Pages in Booklet: 24

पुरितका में प्रश्नों की संख्या / Number of Questions in Booklet: 100 55 (EID) बिपय कोड सीरीज

समय / Time : 2.00 घंटे / Hours

INSTRUCTIONS

Answer all questions.

2. All questions carry equal marks.

- 3. Only one answer is to be given for each question.
- If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- 7. The candidate should ensure that Series Code of the Question Paper Booklet and Answer Sheet must be same after opening the envelopes. In case they are different, a candidate must obtain another question paper of the same series. Candidate himself shall be responsible for ensuring this.
- Mobile Phone or any other electronic gadget in the
 examination hall is strictly prohibited. A candidate
 found with any of such objectionable material with
 him/her will be strictly dealt as per rules.
- Please cirrectly fill your Roll Number in O.M.R. Sheet. 5 marks will be deducted for filling wrong or incomplete Roll Number.
- 10. If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorised material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted under Section 3 of the R.P.E. (Prevention of Unfairmeans) Act, 1992. Commission may also debar him/her permanently from all future examinations of the Commission.

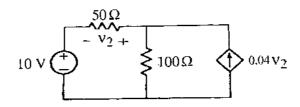
पूर्णांक / Maximum Marks : 100

निर्देश

- 1. सभी प्रश्नों के उत्तर दीजिए।
- 2. सभी प्रश्नों के अंक समान हैं।
- प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।
- 4. एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा।
- 5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 ऑकित किया गया हैं। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बबल को
- उत्तर-पत्रक पर नीले बॉल पाइंट पेन से गहरा करना है।

 5. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा।
 गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक
 से अधिक उत्तर से है। किसी भी प्रश्न से संबंधित गोले या बवल
 को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।
- 7. प्रश्न-पत्र पुरितका एवं उत्तर पत्रक के लिफाफे की सील खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुरितका पर वहीं सीरीज अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई भिन्नता हो तो वीक्षक से प्रश्न-पत्र की ही सीरीज वाला दूसरा प्रश्न-पत्र का लिफाफा प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।
- 8. मोबाईल फोन अथवा इलेक्ट्रोनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित हैं। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानी पूर्वक सही भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांको में से अनिवार्य रूप से कार्ट जाएंगे।
- 10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की त्रुटि हो तो प्रश्न के हिन्दी तथा अंग्रेजी रूपान्तरों में से अंग्रेजी रूपान्तर मान्य होगा।
- चेतावनी: अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराई जायेगी और आर. पी. ई. (अनुचित साधनों की रोकथाम) अधिनियम, 1992 के नियम 3 के तहत कार्यवाही की जायेगी। साथ ही आयोग ऐसे अभ्यर्थी को भविष्य में होने वाली आयोग की समस्त परीक्षाओं से विवर्जित कर सकता है।

SEGI

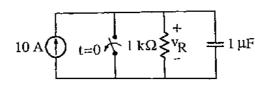

AEI

- 1 A circuit component that opposes the change in circuit voltage is
 - (1) Resistance

(2) Capacitance

(3) Inductance

- (4) Conductance
- 2 In the following circuit voltage v_2 is



(1) 5 V

(2) 75 V

(3) 3 V

- (4) 10 V
- 3 An RLC series circuit is predominantly inductive
 - (1) At resonant frequency
 - (2) Below resonant frequency
 - (3) Above resonant frequency
 - (4) At the half power frequency
- In the network shown below the switch is opened at t=0. At $t=0^+$ the value of d^2v_R/dt^2 is

- (1) -10^{10} V/s^2
- (2) 10^{10} V/s²

(3) 10¹³ V/s²

(4) -10^{13} V/s²

5 The voltage response of a network to a unit step input is

$$V_0(s) = \frac{10}{s(s^2 + 8s + 16)}$$

The response is

- (1) Underdamped
- (2) Overdamped
- (3) Critically damped
- (4) Can't be determined

6 Two meters X and Y require 40 mA and 50 mA, respectively, to give full-scale deflection, then

- (1) sensitivity cannot be judged with given information
- (2) both are equally sensitive
- (3) X is more sensitive
- (4) Y is more sensitive

The minimum number of wattmeter(s) required to measure 3-phase, 3-wire balanced load

(1) one

(2) two

(3) three

(4) four

8 Which of the following indicating instruments has/have linear scale?

- (1) moving-iron meter
- (2) permanent magnet moving-coil meter
- (3) thermocouple meter
- (4) rectifier type meter

9	A 12 bit A/D converter has a range 0-10. What is the approximate resolution of the converter?
	(1) i mV (2) 2.5 mV
	(3) $2.5 \mu V$ (4) 12 mV
10	The accuracy of Kelvin's double bridge for the measurement of low resistance is high because the bridge
*	(1) uses two pairs of resistance arms
	(2) has medium value of resistance in the ratio arms
	(3) uses a low resistance link between standard and test resistances
	(4) uses a null indicating galvanometer
11	In a $3\frac{1}{2}$ digit voltmeter, the largest number that can be read is
	(1) 0999 (2) 1999
	(3) 4999 (4) 9999
12	The capacitance and loss angle of a given capacitor specimen are best measured by
	(1) Wheatstone bridge (2) Maxwell bridge
	(3) Anderson bridge (4). Schering bridge
13	Wave winding is employed in a DC machine of
	(1) High current and low voltage rating
	(2) Low current and high voltage rating
	(3) High current and high voltage rating
	(4) Low current and low voltage rating
55	/AEI_A] 4 [Contd

•

14	The armature resistance	livers 195 A at a terminal voltage of 200 V. is 0.03 Ω and field winding resistance is ay losses are 900 W. The total Cu losses are
	(1) 1200 W	(2) 1000 W
	(3) 2200 W	(4) 2140 W
15	Which of the following ma	terials is best suitable in construction of the
	(1) Silicon steel	(2) Wrought iron
	(3) Cast iron	(4) Soft iron
16	The armature reaction mm	in a DC machine has a form of
	(1) Sinusoidal	(2) Rectangular
	(3) Trapezoidal	(4) Triangular
17	A 100 kW, 230 V shunt ge and shunt field resistance 57, induced voltage at half full	nerator with armature resistance is 0.05 Ω .5 Ω operated at rated voltage. What is the -load ?
	(1) 252 V	(2) 126 V
	(3) 230 V	(4) 241 V
18	armature resistance of 0.6 Ω .	generator with 480 conductors has an If the conductors are re-connected to form lue of armature resistance will be
	(1) 0.05 Ω	(2) 0.06 Ω
	(3) 0.50 Ω	(4) 0.54 Ω

19	moto	armature resistance and bru r are 0.2 Ω and 2 V resp ng equals to	sh vol ective	tage drop of a 120 V DC shunt ly. The current at the instant of
	(1)	590 A	(2)	600 A
	(3)	10 A	(4)	610 A
20	A Do	C series motor is accidentally torque produced will be	onn conn	ected to a single-phase AC supply.
	(1)	Of zero average value		
	(2)	Oscillating		
	(3)	Steady and unidirectional		,
	·/(4)	Pulsating and unidirection	al	·
	50 A doub (1) (3)	A. The armature resistance bled while the flux remains 476 rpm 21.7 rpm	of the consta (2) (4)	motor is 0.2 Ω . If the torque is nt, the speed of the motor will be 525 rpm 512 rpm
22	The	torque speed characteristic	ofa	series motor is
	(1)	Linearly rising	(2)	A rectangular parabola
	(3)	A parabola	(4)	Linearly decreasing
23	of ?	200 A. The effective resistar	ice ref 190 W	ner has a full load secondary current erred to secondary is 0.008Ω and I . The efficiency of the transformer wer factor will be
	(1)	98.78%	(2)	99.08%
	(3)	98.48%	(4)	96.50%
55	/AEI	_A]	6	[Contd

.

2	4 T	hree phase transformers v	vhich	cannot be connected in parallel are
) YY with ΔΔ		2) YΔ with ΔY
	(3) YY with Y Δ	('	Both (2) and (3)
25	on	ig ou ore hower ractor. If	is four actor l	ner has an efficiency of 96% at full d that the same efficiency is achieved agging. The copper-loss and iron-loss espectively are
	(1)	3, 2	(2	2.67, 2.33
	(3)	I, 4	(4	3.33, 1.67
	3-pi	nase transformer bank. It	is us ine. If	e connected in star-delta to form a ed to step down the voltage of a the primary line current is 10 A and EVA will be
	(3)	38.1	(4)	114.3
27	The	magnetizing current in a	transf	ormer is rich in
	(1)	3 rd harmonic	(2)	5 th harmonic
	(3)	7 th harmonic	(4)	13 th harmonic
28	A 60	Hz four pole induction me frequency of rotor curre	otor ru ent ?	ns at 1755 rpm at rated load. What
	(I)	1.5 Hz	(2)	61.5 Hz
	(3)	73.125 Hz	(4)	4.5 Hz
55 / A	EI_A	1	7	(Canta

29	If tra	nsformer i	frequency is closs 50 Hz to	nanged fr 60 Hz a	om 50 H t constan	z to 60 Hz, the ratio of t voltage is
	(1)	5/6		(2)	25/36	
	(3)	6/5		(4)	1	
30	An i	nduction r d but runs	notor when sta s at 1/7 th of th	he rated	speed. T	not accelerate up to full he motor is said to be
	(1)	Locking		(2)	Plugging	3
	(3)	Crawling	,	(4)	Cogging	
31		maller air Reduce Increase Reduce	the following gap in a poly the changes of the starting to the chance of the magnetizing	y-phase if crawling orque cogging	nduction	rrect ? motor helps to .
32	, -				istic of an	induction motor varies as
	(1)	Torque	$\propto (1/\text{slip}^2)$	(2)	Torque	$\propto (\text{slip}^2)$
	(3)	Torque	∞ (1/slip)	(4)	Torque	∞ slip
33	rot	voltmeter for of an i	nduction motor	illations r. The sta	per minu ator frequ	te when connected to the ency is 50 Hz. The slip of
	(1)	2%		(2)	2.5%	
	(3)	4%		(4)	5%	
55	5 / AE]	[_ A]		8		[Contd

34		hich one of the following muirrel cage induction rotor	nethod:	s are suitable for speed control o
	(A) Voltage control	(B)	Rotor resistance control
	(C) Frequency control	(D)	Pole changing method
	Se	lect the correct answer using	g the	codes given below
	(1)	(B), (C) and (D)	(2)	(A), (C) and (D)
	(3)	(A), (B) and (C)	(4)	(B) and (D)
35	Sta	r delta starting is equivalent	to a	atotransformer staring with
		85% tapping		58% tapping
	(3)	52% tapping	(4)	33% tapping
36	For star	wound rotor motors, rotor reaing because it	sistanc	e is preferred over reduced voltage
	(1)	limits staring current only		
	(2)	increases starting torque o	nly	
	(3)	improves staring power fac	ctor o	nly
	(4)	limits staring current, incre staring power factor	ases si	tarting torque and also improves
3 7	Smo	oth control of induction mo	tor ca	n be obtained by
	(1)	variation of rotor resistance		,
	(2)	variation of supply frequen	cy onl	у
	(3)	rotor slip-power control on		
	(4)	both variation of supply fre	quenc	y and rotor slip-power control

38	Plugging	is	executed	when
----	----------	----	----------	------

- (1) two stator terminals are shorted together
- (2) the supply terminals of any two stator phases are interchanged
- (3) any two stator terminals are earthed
- (4) any two stator terminals are connected to a d.c. source

39 Regenerative braking occurs when

- (1) no. of poles is decreased in pole changing motor
- (2) the load is lifted by a hoisting machine
- (3) the load is lowered by a hoisting machine
- (4) the load move upside on slope

40 In dynamic braking

- (1) the stator terminals are switched over to d.c. source from the a.c. supply
- (2) the supply terminals of any two stator phase are interchanged
- (3) any two stator terminals are earthed
- (4) a d.c. voltage is injected in the rotor circuit
- 41 If the rotor poles of an 8-pole synchronous generator shift by 10 mechanical degrees from no-load to full-load, what will be the value of torque angle?
 - (1) 20°

(2) 10°

(3) 40°

(4) 15°

- 42 Damper windings in a synchronous machine are
 - (1) Embedded on the rotor in interpolar regions to prevent the rotor from running at sub-synchronous speed
 - (2) Embedded in the pole shoes to prevent the rotor from running at super synchronous speed
 - (3) Embedded in the pole shoes to reduce the rotor oscillation about the operating point
 - (4) Embedded in the rotor in the interpolar regions to reduce the rotor oscillation about the operating point.
- 43 Which of the following methods gives more accurate results for determination of voltage regulation of an alternator?
 - (1) m.m.f. method
 - (2) synchronous impedance method
 - (3) Potier triangle method
 - (4) American institute standard method
- 44 In a salient pole synchronous generator reluctance power is given by

(1)
$$3V_t^2 \left(\frac{X_d + X_q}{2X_q X_d}\right) \sin \delta$$
 (2) $3V_t^2 \left(\frac{X_d + X_q}{2X_q X_d}\right) \sin 2\delta$

(3)
$$3V_t^2 \left(\frac{X_d - X_q}{2X_q X_d}\right) \sin \delta$$
 (4) $3V_t^2 \left(\frac{X_d - X_q}{2X_q X_d}\right) \sin 2\delta$

- When a 3-phase alternator is suddenly short-circuited at its terminals the initial value of the short circuit current is limited by which one of the following?
 - (1) Sub transient reactance $X_d^{"}$
 - (2) Transient reactance X'_d
 - (3) Synchronous reactance X_d
 - (4) Sum of $X_d^{"}$, $X_d^{'}$ and $X_d^{'}$

46	A syn	nchronous motor of the	draws a 2000 k' he motor is 95	VA at a 5%, the	power fact e developed	or of 90% leading. d power will be
	(1)	1800 kW	(2)	2000) kW	
	(3)	1710 kW	(4)	1897	7.7 kW	
47	Whic	ch of the follow	ing types of m	otor i	s not a sel	f-starting?
4,	(1)	Synchronous me				
	(2)	DC series moto				
	(3)	Induction moto		ı slip		
	(4)	Induction moto				
48	0.8	pf leading has fu	l load efficienc	y of 91	%. The arr	motor operating at mature resistance is at is nearly equal to
•	(1)	173 A	(2)) 240	Α	
	(3)	190 A	(4)) 127	' A	
49	The	power factor o	f a synchronou	s moto	or	
	(1)	Improves with at high excitat		itation	and may e	ven become leading
	(2)	Decreases with	n increase in e	excitation	on	
	(3)	Is independent	of its excitati	ion		
	(4)	Increases with	loading for a	given	excitation	
50	In t	he 'V' curve of a s	ynchronous mot	or what	x and y coc	ordinates represents?
	(1)	Armature curr	ent and field	current		
	(2)	Power factor	and field curre	ent		
	(3)	Armature curr	ent torque			
	(4)	Torque and fi	eld current			
55	/AEI	[A]	12	,		[Contd

51 Size	e of conductor in Distrib	bution	system is found using	
(1)	Ohm's law	(2	_	
(3)	Kelvin's law	(4)) Faraday's law	
52 The	ideal load factor should	l be		
(1)	1.0	(2)	0.5	
(3)	0.2	(4)	0.8	
53 For	transmission line which	of the	following relations is tr	ue ?
(1)	AD - BC = 1		-AD-BC = 1	
(3)	AD - BC = -1	(4)	AD - BC = 0	
	led conductors are emplo			
	Appearance of the trans			•
	Mechanical stability of t		e	
	Current capacity of the			
(4)	Corona performance of t	the line	2	
55 Consid	der the following stateme	ents :		
Additi line in	on of lumped capacitance	es in p	parallel to a loss-free train	nsmission
(A) (Characteristic impedance			
(B) P	ropagation constant			
(C) S	ystem stability			
(D) C	charging current			
Which	of these statements are	correc	t ?	
(1) (4	A) and (C)	(2)	(B) and (D)	
(3) (I	3), (C) and (D)	(4)	(A), (B) and (D)	
55 / AEI_A]		13	ſ	Contd

56	In short transmission line, volta factor angle of the load at the	ige representation	gulation is zero when the power ving end side is equal to
	$(1) \tan^{-1}(X/R)$	(2)	$tan^{-1}(R/X)$

57 During the corona along with hissing noise a smell of the following gas is also come

(4) $tan^{-1}(R/Z)$

- (1) O_2 (2) O_3 (3) H_2 (4) H_2S
- Which of the following is not a method of voltage equalization in a string insulator?
 - (1) Increasing of length of cross arm
 - (2) Grading of the units
 - (3) Static shielding

(3) $\tan^{-1}(X/Z)$

- (4) Connecting two discs in parallel
- Which of the following insulators is used in transmission lines at the river and road crossings?
 - (1) Pin type insulator (2) Suspension type insulator
 - (3) Strain type insulator (4) Both (1) and (2)
- 60 The surge impedance of an underground cable is around
 - (1) 400 ohms (2) 25 ohms
 - (3) 50 ohms (4) 100 ohms

6	I W	hen the diameter of the pacitance	core a	and cable is doubled, the value o
	(1) Will be reduced to hal	f	
	(2) Will be reduced to one	e-fourt	th
	(3) Will be doubled		No. of the second secon
	(4)) Remains unchanged		
62	Сс	opper as conductor for cab	les is	used as
	(1)	Hard drawn	(2)) Hardened and tempered
	(3)	Annealed	(4)	
63	The	e distribution transformer i	s gene	nerally connected in
	(1)	Delta / Delta	(2)	Delta / Star
	(3)	Star / Star	(4)	Star / Delta
64	The and	most appropriate speed of hydro power plants would	genera	rator in rpm used in thermal, nuclear respectively
	(1)	3000, 300 and 1500	(2)	3000, 3000 and 300
	(3)	1500, 1500 and 3000	(4)	1000, 900 and 750
65	In to	hree phase, 4 wire AC sys	stem, i	unbalancing is caused due to
	(1)	Single phase loads		
	(2)	Three phase induction mo	otors	
	(3)	Synchronous condenser		
	(4)	Three phase transformers		
55 / A	AEI_A		15	[Contd

55	/AEI_A]	16	[Contd
	(3) Three	(4)	Six
	(1) One	(2)	Two
70	How many relays are used system?	to dete	ct interphase faults of a three-line
	(3) Power transformer	(4)	Pulse transformer
	(1) Fuse		Current transformer
69	The relay operating coil is s		•
	(3) $6 \times 10^5 \text{ MWh}$	(4)	16 × 10 ⁴ MWh
	(1) $12 \times 10^4 \text{ MWh}$	(2)	$8 \times 10^4 \text{ MWh}$
68	6 hours, and is shut down for	the res	00 MW for 2 hours, 50 MW for t of each day. It is also shut down ear. Energy supplied per year is
	(3) Greater than 1	(4)	Zero
	(1) Equal to 1	(2)	Less than 1
67	The diversity factor is always	;	
	(4) Phase opposition with th	ne volta	ge
	(3) Is in phase with the vol	tage	
	(2) Leads the voltage by 90°	0	
	(1) Lags the voltage by 90°		
66	In AC motors, the magnetizing	g carre	

55 / £	AEI_A	A] 17	,	[Contd	
	(4)			y the relay and the circuit breaker	
	(3)	Relay operates, then successi	ully th	he isolator and the circuit breaker	
	(2)	Relay operates then the circ	cuit b	oreaker	
	(1)	Circuit breaker operates the			
75	Whe	en a fault occurs in a high	voltag	ge transmission line, first the	
		1			
	(4)	Impedance relay	ciay		
	(3)	Carrier-current protection re	elas,	•	
	(2)		ay		
	(1)	Directional over-current rel			
74	Which is the main relay for protecting up to 90% of the transmission line-length in the forward direction?				
	(4)	No length criterion			
	(3)	Long transmission lines			
	(2)	Medium transmission lines	3		
	(1)				
7 3	Mł	no relay is normally used for	the	protection of	
	(4)	Earth any stray voltage			
	(3)		luring	the circuit breaker operation	
	(2)			actuating quantity attains a certa	
	(1)) Provide additional safety	to the	e circuit breaker in the operatio	n
72	: Ti	ne protective relay is used to)		
	(3) Buchholz relay	(4)	Over-fluxing relay	
	(1		(2)	Differential relay	
	P	ossible major raunt in a trans	sforme	er ?	the
<i>,</i>		vnich one of the following re	lay ha	as the capability of anticipating t	the

- 76 Phase relays are used to provide protection against
 - (1) Single line to ground fault
 - (2) Three phase faults only
 - (3) Phase faults involving two or more phases
 - (4) Double phase to ground fault only
- 77 In a biased differential relay the bias is defined as the ratio of
 - (1) Number of turns of restraining and operating coil
 - (2) Operating coil current and restraining coil current
 - (3) Fault current and operating current
 - (4) Fault current and restraining coil current
- 78 In the R-X plane the characteristics of an impedance relay is represented by
 - (1) Parabola

- (2) Circle
- (3) Straight line
- (4) Ellipse
- 79 For a solidly grounded system and reactance grounded system the value of $\frac{X_0}{X_1}$ are
 - $(1) \quad \frac{X_0}{X_1} > 3; \frac{X_0}{X_1} < 3$
- (2) $\frac{X_0}{X_1} < 3; \frac{X_0}{X_1} > 3$
- (3) $\frac{X_0}{X_1} = 3; \frac{X_0}{X_1} < 3$
- (4) $\frac{X_0}{X_1} > 3; \frac{X_0}{X_1} = 3$
- 80 The system is said to be effectively grounded only if R_0/X_1 and X_0/X_1 are respectively (symbols have usual meaning)
 - (1) ≤ 1 and ≤ 3
- (2) ≥ 1 and ≥ 3
- $(3) \leq 2 \text{ and } \geq 2$
- $(4) \geq 2 \text{ and } \leq 2$

Induction heating (3) Dielectric heating (4) Resistance heating The effect of tachometer feedback in a control system is to reduce 82 Only time constant (1)(2) Only gain (3)Damping Both gain and time constant (4) If d is the distance of surface from a source, the illumination upon the 83 surface will vary as (1) d (2) d^2 (3) 1/d (4) I/d^2 84 The open-loop transfer function with unity feedback are given below for different systems. The unstable system is $(2) \quad \frac{2}{s^2(s+2)}$ (1) $(4) \quad \frac{2(s+1)}{s(s+2)}$ The open-loop transfer function of a unity feedback system is 85 $G(s) = \frac{K(s+10)(s+20)}{s^2(s+2)}$ The closed loop system will be stable if the value of K is (1) 2 (2)3

(4)

19

5

[Contd...

Which method of heating is likely to give leading power factor ?

(2)

Electric arc heating

81

(1)

(3)

55 / AEI_A]

86 The transfer function for a single loop non-unity feedback control system is

$$G(s) = \frac{1}{s^2 + s + 2}$$

$$H(s) = \frac{1}{s+1}$$

The steady state due to unit step input is

(1) 6/7

(2) 6/5

(3) 2/3

- (4) 0
- 87 The system has the following transfer function

$$G(s) = \frac{100(s+15)(s+50)}{s^4(s+12)(s^2+3s+10)}$$

The type and order of the system are respectively

(1) 7 and 5

(2) 4 and 5

(3) 4 and 7

- (4) 7 and 4
- 88 The phase margin of a system with the open loop transfer function

$$G(s) H(s) = \frac{(1-s)}{(1+s)(3+s)}$$

(1) 68.3°

(2) 90°

(3) 0^Q

(4) ∞

89	In a thyristor, the holding current I_H is					
	(1) More than the latching current I _L					
	(2) Less than I _L					
	(3) Equal to I _L					
	(4) Zero					
90	90 The snubber circuit is used in thyristor circuit for					
	(1) Triggering	(2) dv/dt protection				
(3) di/dt protection	(4) phase shifting				
		, , , , , , , , , , , , , , , , , , ,				
а	91 A DC chopper operates on 230 V dc and frequency of 400 Hz, feed an R-L load. If the output voltage of chopper is 150 V, the ON time of the chopper is					
(1	1) 3.84 msec	(2) 2.5 msec				
(3	1.63 msec	(4) 0.65 msec				
92 A single phase full bridge inverter is fed from a 48 V battery and delivering power output to a pure resistive load. What is the value fundamental output voltage?						
(1)	21.62 V	(2) 30.56 V				
(3)	43.22 V	(4) 14.4 V				
star	connected load. The RMS	ed from a 500 V dc source. The inverter de and it is supplying a purely resistive, alue of the output (line) voltage is				
(1)	•	2) 259.80 V				
(3)	408 V	4) 235.56 V				
55 / AEI_	A] 21	[Contd				

94		single pulse modulation F nated if pulse-width is mad		inverter, third harmonic can be al to			
	(1)	30°	(2)	150°			
	(3)	60°	(4)	120°			
95	An AC induction motor is used for a speed control application. It is driven from an inverter with a constant V/F control. The motor name plate details are as follows: (no. of poles = 2)						
	$V = 415 \text{ V}; V_{ph} = 3 \text{ V}; F = 50 \text{ Hz}; N = 2850 \text{ rpm}$						
	The motor runs with the inverter output frequency set at 40 Hz, and with half the rated slip. The running speed of motor is						
	(1)	2400 rpm	(2)	2280 rpm			
	(3)	2340 rpm	(4)	2790 rpm			
96	Wh	ich one of the following is	s not	a vectored interrupt?			
	(1)	TRAP	(2)	INTR			
	(3)	RST 3	(4)	RST 7.5			
97	97 In 8085, if the clock frequency is 5 MHz, the time required to execut an instruction of 18 T-states in μs?						
	(1)) 3	(2)	3.6			
	(3)) 4	(4)	6			
55	5 / AE l	[_A]	22	[Contd			

9	8 Co	nsider the	following Id	oop :				
		XRA			Α		<i>(</i>	
		LXI		B, 000	7Н			
	LO	OP:	DCX		В		. 1	
		JNZ		LOOP		. :		
	This	loop will	be execute	d		,		
	(1)	l time						٠
	(2)	8 times						
	(3)	7 times						
	(4)	Infinite tin	nes					
99	The 1	number of	output pin	of a 80	85 microproces	sor is		
	(1)	40		(2)	27			
	(3)	21		(4)	19			
100	Which	of these i	nstructions	is a 3-b	yte instruction	?		
	(1) N	MVI A		(2)	LDAX B			

55 / AEI_A]

(3)

JMP 2050

23

(4)

LDAX B

MOV A, M

[Contd...

5

5

5

$$\frac{E(0)}{\omega(0)} = 145$$

