Rajasthan Public Service Commission - 2016

Paper: 70-Junior-Hydro-Geologist

Ques # :1

It is desirable to use Groundwater than Surface water because:

- 1) The temperature and chemical composition of groundwater is nearly constant
- 2) Groundwater storage is not seriously affected by short droughts
- 3) It is stored by nature through many years of recharge
- 4) all of these

सतही जल की बजाय भूगर्भीय जल का उपयोग वांछनीय है क्योंकि -

- 1) भूगर्भीय जल का तापमान और रासायिनक रचना समान रहती है
- 2) सूखे के दौरान भूगर्भीय जल के भंडार पर कम असर होता है
- 3) प्रकृति द्वारा भूजल का भंडारण कई वर्षो से होता है
- 4) उपरोक्त सभी

Ques # :2

Groundwater development is discouraged in some areas because:

- 1) Underlain rocks have insufficient porosity and permeability to yield much water to wells
- 2) TDS content in groundwater is greater than that in surface water
- 3) In regions of high precipitation cost of developing wells is higher than the cost of developing small streams
- 4) All of these

कुछ स्थानों पर भूजल विकास हतोत्साहित किया जाता है, क्योंकि -

- 1) जलभृत की चट्टानों की छिद्रिलिता और पारगम्यता आवश्यकता से कम होती है
- 2) भूजल में TDS की मात्र सतही जल से अधिक होती है
- 3) अधिक वर्षा के कारण कुओं के विकास की लागत छोटी निदयों से अधिक आती है

4)

उपरोक्त सभी

Oues #:3

In the vicinity of cities the TDS is higher in precipitation because -

- 1) The dust and smoke produced by factories
- 2) Dissolved gases
- 3) There are no TDS in precipitation
- 4) The dust and smoke produced by factories and Dissolved urban gases

शहरों के नजदीक वर्षा के पानी में TDS की मात्रा अधिक होती है क्योंकि -

- 1) उद्योग से उत्पादित धूल और धुंए के कारण
- 2) हवा में घुली हुई गैस के कारण
- 3) वर्षा के जल में TDS नहीं होता
- 4) उद्योग से उत्पादित धूल और धुंए के कारण तथा हवा में घुली हुई गैस के कारण

Ques # :4

The amount of energy required to evaporate one cubic centimetre of water is -

- 1) 597 calories
- 2) 1000 calories
- 3) 1597 calories
- 4) 100 calories

एक क्यूबिक सेंटीमीटर जल के वाष्पीयकरण के लिये इतनी उर्जा की आवश्यकता होती है -

- 1) 597 केलोरी
- 2) 1000 कैलोरी
- ³⁾ 1597 कैलोरी
- ⁴⁾ 100 कैलोरी

Ques # :5

Vadose water is in the vadose zone that includes:

- 1) Groundwater and capillary water
- 2) Capillary water, soil water and groundwater
- 3) Capillary water, gravitational water and soil water
- 4) Groundwater, gravitational water and soil water

वेडोस क्षेत्र के वेडोस जल में निम्न शामिल होते है :-

- ¹⁾ भूजल तथा केशिकीय जल
- $^{2)}$ केशिकीय जल, मृदा जल तथा भूजल
- ³⁾ केशिकीय जल, ग्रुत्व जल तथा मृदा जल
- ⁴⁾ भूजल, गुरुत्व जल तथा मृदा जल

Ques # :6

Water table is:

- 1) The surface in unconfined material along which the hydrostatic pressure is equal to the atmospheric pressure
- 2) The surface separating the capillary fringe from the zone of saturation
- 3) Water level surface in wells that tap an unconfined saturated material
- 4) All of these

वाटर टेबल क्या होता है ?

- 1) अनकन्फाईण्ड चट्टानों में वह सतह जहाँ द्रवस्थैतिय तथा वाय्मंडलीय
- 2) केशिका फ्रिंज तथा परिपूर्णता क्षेत्र को अलग करने वाली सतह
- 3) कुओं में अनकन्फाईण्ड परिपूर्ण चट्टानों की जल-स्तर सतह
- 4) उपरोक्त सभी

Ques # :7

Aquitards:

- 1) are layers of clay and silt that retard water flow underground and act as barriers for groundwater
- 2) direct the surface water that seeps down and replenishes aquifers
- 3) Both Statement are incorrect
- 4) Both Statements are correct

एक्विटर्ड :

- 1) मिट्टी और गाद की परतें जो भूमिगत जल का बहाव कम करती है तथा भूजल को बहने से रोक देती है
- 2) सतह जल को जलभृत में रिस कर जाने की दिशा दिखाता है
- 3) दोनों वाक्य गलत हैं
- 4) दोनों वाक्य सही हैं

Ques # :8

Water level fluctuations are due to:

- 1) changes in groundwater storage
- 2) deformation of aquifers
- 3) fluctuations of atmospheric pressure
- 4) all of these

जल स्तर अस्थिरता किन कारणों से होती है :-

- 1) भूजल भंडार में बदलाव
- 2) एक्विफर में विकृति
- 3) वायुमंडलीय दबाव में अस्थिरता
- 4) उपरोक्त सभी

Ques # :9

If there are 10⁻⁵ moles per liter of H⁺ in water

- 1) then the pH of water is 5
- 2) then it is pure water

3) then water contains no dissociated OH ions

4) then the Eh of water is 10

यदि जल में 10^{-5} मोल प्रति लीटर H^+ है तो

- ¹⁾ जल का pH, 5 हैं
- 2) यह शुद्ध जल है
- 3) जल में पृथक OH नहीं हैं
- ⁴⁾ जल का Eh10 है

Ques #:10

63 ppm Mg^{2+} (At wt of Mg = 24.32, valency =2) is equal to

- 1) 5.19 epm
- 2) 6.7 epm
- 3) 63 epm
- 4) 6.3 epm

63 ppm Mg^{2+} (At wt of Mg = 24.32, valency =2)

निम्न के बराबर है

- 1) 5.19 epm
- 2) 6.7 epm
- 3) 63 epm
- 4) 6.3 epm

Ques # :11

Specific electric conductance of potable subsurface water ranges from -

- 1) 30 to 2000 micromhos
- 2) 0.055 to 0.5 micromhos

- 3) 45000 to 55000 micromhos
- 4) 5.0 to 30 micromhos

पीने योग्य भूजल का विशिष्ट विद्युत प्रवाहकत्व निम्न होता है -

- 1) 30 to 2000 micromhos
- 2) 0.055 to 0.5 micromhos
- 3) 45000 to 55000 micromhos
- 4) 5.0 to 30 micromhos

Ques #:12

Water for domestic and industrial uses should have less than 1000 ppm TDS and for agricultural uses less than 3000 ppm TDS.

- 1) True
- 2) false
- 3) about 300,000 ppm
- 4) 10 and 100 ppm TDS respectively

घरेलु तथा औद्योगिक उपयोग के लिये जल का TDS 1000 ppm तथा कृषि के लिये 3000 ppm से कम होना चाहिए

- ¹⁾ सही
- ²⁾ गलत
- ³⁾ लगभग 300,000 ppm
- ⁴⁾ 10 **तथा** 100 ppm TDS

Ques # :13

Water that has never been part of hydrosphere is called

- 1) Juvenile water
- 2) Ice water
- 3) Metamorphic water
- 4) Connate water

जो कभी हाइड्रोस्फीयर का हिस्सा नहीं रहा वह जल कहलाता है

- 1) जुवेनाइल जल
- ²⁾ आइस जल
- 3) मेटामोर्फिक जल
- $^{4)}$ सहजात जल

Ques #:14

A mixture of miscible salt water and fresh water is treated as homogeneous

- 1) True
- 2) False
- 3) only if density does not vary from place to place
- 4) is treated as heterogeneous

घुलनशील क्षारीय जल तथा शुद्ध जल का मिश्रण सजातीय होता है

- ¹⁾ सही
- ²⁾ गलत
- 3) यदि घनत्व नहीं बदलता है तो
- 4) नहीं, विजातीय होता है

Ques # :15

Porosity will be highest for cubical array of

- 1) rhombs
- 2) spheres
- 3) cubes
- 4) rectangular sandstones pieces

निम्न के क्यूबिकल ऐरे की छिद्रिलता सबसे अधिक होती है

- ¹⁾ विषम कोण
- 2)

गेंदाकार

- ³⁾ घन
- 4) आयताकार सैंडस्टोन के टुकड़े

Ques #:16

Hydraulic conductivity depends on properties of the fluid as well as characteristics of the medium

- 1) Darcy failed to recognise the above fact
- 2) Dupuit failed to recognise the above fact
- 3) Both Darcy and Dupuit failed to recognise the above fact
- 4) Darcy was aware of the above fact

द्रवचालित प्रवाहिता द्रव तथा माध्यम के गुणों पर निर्भर रहती है

- 1) Darcy यह तथ्य नहीं जानता था
- 2) Dupuit यह तथ्य नहीं जानता था
- 3) Darcy और Dupuit दोनों यह तथ्य नहीं जानते थे
- 4) Darcy को इस इस तथ्य की जानकारी थी

Ques #:17

Intrinsic permeability is characteristic of the

- 1) properties of soil and fluid
- 2) properties of soil (medium)
- 3) properties of fluid
- 4) properties of groundwater

आतंरिक पारगम्यता निम्न की विशेषता होती है

- 1) मिही तथा द्रव के गुण
- 2) मिट्टी (माध्यम) के गुण
- ³⁾ द्रव के गुण

4) भूजल के गुण

Ques #:18

Reynold's No is given as; if V is specific discharge, D is characteristic length and v is kinematic viscosity

$$N_R = VD/v$$

$$N_R = V_V/D$$

$$N_R = Dv/V$$

$$N_R = V + D/v$$

यदि V = स्पेसिफिक डिस्चार्ज, D = लक्षणित लम्बाई,

ν = किनेमातिक विस्कोसिटी है, तो रेनॉल्ड नंबर होता है :-

1)
$$N_R = VD/v$$

$$N_{R} = V_{\nu}/D$$

$$N_R = Dv/V$$

$$N_R = V + D/v$$

Ques #:19

The amount of water used in storage released from a column of aquifer with unit cross section under a unit decline of head is represented as:

- 1) K
- 2) S
- 3) T
- 4) A

एक्वीफर के ईकाई स्तम्भ में जल प्लावन के द्वारा दबाव में इकाई गिरावट आने पर जितना जल का भण्डारण होता है ; उसे निम्न से दर्शाया जाता है

1) K

2)	\mathbf{S}
3)	Γ
4)	A
Ques	# :20
For e	very meter (m) of fresh water above mean sea level, the thickness of the fresh water lens resting on the salt water is about'
1) 35	im the state of th
2) 36	om en
3) 40	
4) 37	'm
लवर्ण	ाय जल पर स्थित प्रत्येक meter शुद्ध जल के लिये मीन सी लेवल से ऊपर शुद्ध जल के लेन्स की मोटाई कितनी होती है
1) 35	m
2) 36	
3) 40	
4) 37	m
Ques	# :21
The r	ocks generally have distinctive porosity and permeability and for that a geologist during exploration of subsurface water first seeks help by
1) pe	rography
2) dri	lling
	smic methods of exploration
4) ma	gnetic methods of exploration
चहान	ों की छिद्रिलता और पारगम्यता अक्सर विशेष प्रकार की होती है जिसका पता भूवैज्ञानिक भूजल अन्वेषण के समय निम्न के द्वारा जांच कर पता
लगत	r 考
1) पेट्र	ोग्राफी
2) ड्रि	लेंग
³⁾ सि	स्मिक अन्वेषण पद्धति

⁴⁾ मैग्नेटिक अन्वेषण पद्धति

Ques #:22

Total water available for recharge, ease of recharge and quantity of groundwater discharge at the surface is determined by

- 1) Hydrologic methods of prospecting
- 2) Dowsing
- 3) Geological maps
- 4) Atmospheric analysis

पुनर्भरण के लिए जल की उपलब्धता , सरलता तथा भूजल विसर्जन की मात्रा का पता निम्न पद्धति से लगाया जाता है

- 1) जलवैज्ञानिकीय खोज विधि
- ²⁾ दौसिंग
- 3) भूवैज्ञानिक नक्शे
- 4) एटमोस्फियरिक विश्लेषण

Ques #:23

The average permeability of igneous and plutonic rocks with depth will generally

- 1) increase
- 2) decrease
- 3) not change
- 4) highly increase

आग्नेय तथा प्लूटोनिक चहानों की औसत पारगम्यता आमतौर पर गहराई में

- ¹⁾ बढ जाती है
- ²⁾ घट जाती है
- 3) बदलती नहीं है
- 4) बह्त अधिक बढ़ जाती है

Ques #:24

Difference in yield in wells of igneous and metamorphic rock aquifers is because of

- 1) differences of mineralogy
- 2) differences in degree of weathering
- 3) differences in degree of compaction
- 4) None of these

आग्नेय तथा कायांतरित चहानों के जलभूतो की जल प्राप्ति में अंतर निम्न कारणों से होता है

- $^{(1)}$ खनिजों में अंतर
- 2) अपक्षयण मात्रा में अंतर
- $^{(3)}$ संघनन में अंतर
- 4) इनमे से कोई नहीं

Ques # :25

Pathological organisms will move efficiently in alluvial aquifers if

- 1) soil is thin or absent over water bearing aquifers
- 2) wells are unprotected
- 3) there is storm runoff in wells
- 4) all of these

रोगात्मक जीव जलोढ़ जलभृत में सरलता से विचरण कर सकते है यदि

- $^{1)}$ जलभृत पर मिट्टी की परत न हो या पतली हो
- 2) कुएँ असुरक्षित हो
- 3) कुओं में आंधी का अपवाह आ जाता हो
- 4) इनमें से सभी

Ques # :26

In volcanic rock aquifers, following rocks will generally have high porosity but very low permeability

- 1) Basalts
- 2) Tuffs
- 3) Dike rocks
- 4) Intrusives

लावा चट्टानों के जलभृतों में निम्न चट्टानों की छिद्रिलता अधिक होगी परन्तु पारगम्यता कम होगी

- 1) बेसाल्ट
- ²⁾ टूफ
- $^{3)}$ डाईक रॉक
- $^{4)}$ इंड्रसिव

Ques # :27

In Cenozoic sediments the salinity of connate water is

- 1) less than that of sea water
- 2) more than that of sea water
- 3) equal to the sea water
- 4) less than that of meteoric water

सेनोजोइक काल के अवसादों में कोनेट जल की क्षारीयता

- 1) समुद्री जल से कम होगी
- 2) समुद्री जल से अधिक होगी
- 3) समुद्री जल से बराबर होगी
- 4) वर्षा के जल से कम होगी

Ques # :28

The reduction of artesian pressure in valley deposits will induce

- 1) expansion of aquifers
- 2) compaction of aquifers

- 3) compaction of aquifers and adjacent silts and clays
- 4) expansion of aquifers and adjacent silts and clays

घाटिय निक्षेप में आर्टीसियन दबाव कम होने पर

- 1) जलभृत का विस्तार होगा
- 2) जलभृत का संहनन होगा
- 3) जलभृत और समीपी मिट्टी और गाद का संहनन होगा
- 4) जलभृत और समीपी मिट्टी और गाद का विस्तार होगा

Ques #:29

Chemical character of groundwater in large valleys of tectonic origin will generally be

- 1) highly variable
- 2) the same
- 3) always free of salinity induced from ancient sea water
- 4) always free of evaporitic solutions

विवर्तनिक से उत्पन्न बड़ी घाटियों के भूजल के रासायनिक गुण

- 1) अत्यधिक अस्थिर होंगे
- 2) स्थिर होंगे
- 3) पुरानी समुद्री लवणीयता से मुक्त होंगे
- 4) वाष्पीय घोल से म्कत होंगे

Ques #:30

The greatest danger of organic pollution is

- 1) in areas of extremely permeable auifers
- 2) in areas of improper waste-disposable facilities
- 3) not a problem in wells within large valleys
- 4) all of these

कार्बनिक प्रद्षण का अत्यधिक खतरा

- 1) अत्यधिक पारगम्य जलभृतो के क्षेत्र में होगा
- 2) असुरक्षित कचरा निस्तारण क्षेत्र पर होगा
- 3) बड़ी घाटियों के कुओं में यह समस्या नहीं होगी
- ⁴⁾ सभी

Ques # :31

What type of water bearing material has the most uniform hydrogeologic properties?

- 1) sandstone
- 2) conglomerate
- 3) evaporite
- 4) dune sand (Consolidated)

कौन से जल संचित करने वाले पदार्थ के भूजलवैज्ञानिकी गुण समान होंगे

- 1) सैंदस्टोन
- 2) कांग्लोमरेट
- 3) वाष्पीय चट्टान
- ⁴⁾ धोरे (जमा)

Ques #:32

The average chemical quality of groundwater is poorer in desert regions because

- 1) slow circulation of ground water will slow the flushing of connate water
- 2) salt contained in rain will get concentrated at the surface
- 3) fine dust in soluble salts blown from playas
- 4) all of these

रेगिस्तान में भू जल की औसत रासायनिक गुणवत्ता अच्छी नहीं होती क्योंकि

1) भू जल की धीमी परिक्रिमा से कोनेट जल मुक्त नहीं हो पाता है

- 2) वर्षा जल का क्षार सतह पर इकट्टा हो जाता है
- 3) प्लाया की बारीक ध्ल घ्लनशील लवण के साथ घ्ल जाती है
- ⁴⁾ सभी

Ques #:33

Varying electrode spacing in resistivity survey helps in

- 1) vertical investigation of an aquifer
- 2) noting changes in quality of groundwater
- 3) knowing impermeable formations
- 4) all of these

इलेक्ट्रोड की दूरी परिवर्तित करने से रेसिस्टीविटी सर्वे में निम्न सहायता मिलती है

- $^{1)}$ जलभृत की लम्बवत जांच में
- 2) भू जल की गुणवत्ता की जांच में
- 3) अपारगम्य विन्यासों का पता लगाने में
- ⁴⁾ सभी

Ques # :34

The ground around electrodes during resistivity survey is moistened to

- 1) establish proper contact with earth
- 2) to break the conductivity
- 3) decrease the salinity of the ground
- 4) None of these

इलेक्ट्रोड के आस पास की भूमि को रेसिस्टीविटी सर्वे के दौरान गीला करने से

- 1) पृथ्वी से अच्छा सम्पर्क स्थापित हो जाता है
- 2) चालकता टूट जाती है
- 3) जमीन की लवणीयता कम हो जाती हैं

4) इनमे से कोई नहीं

Ques #:35

The sub-surface salt water boundaries become apparent on a resistivity-depth curve due to

- 1) increase in resistivity
- 2) decrease in resistivity
- 3) straightening of the curve
- 4) refraction of the curve

अध:स्थल लवणीय जल सीमा रेसिस्टीविटी - गहराई ग्राफ पर दृष्टिगत हो जाती है क्योंकि

- 1) रेसिस्टीविटी अधिक हो जाती है
- 2) रेसिस्टीविटी घट जाती है
- 3) ग्राफ पर रेखा सीधी हो जाती है
- 4) रेखा परावर्तित हो जाती है

Ques #:36

Seismic waves may be reflected or refracted

- 1) at interface where a velocity change occurs
- 2) in homogeneous formations
- 3) in groundwater
- 4) in ocean water

सिस्मिक किरणों का परावर्तन या अपवर्तन कहाँ होता है ?

- 1) जहाँ वेग बदल जाता उस इंटरफ़ेस पर
- 2) समरूप विन्यासों में
- $^{3)}$ भू जल में
- ⁴⁾ समुद्री जल में

Ques #:37

Resistivity Log is affected by

- 1) fluid within a well and ground water
- 2) character of the surrounding strata
- 3) Well diameter
- 4) all of these

रेसिस्टीविटी अभिलेख किस से प्रभावित होता है?

- 1) भूजल तथा कुँए में द्रव से
- 2) समीपी चट्टानों के गुणों से
- 3) कुँए के व्यास से
- $^{4)}$ इनमें से सभी

Ques #:38

In SP log, flow from the formation into the wells shows

- 1) positive values
- 2) negative values
- 3) no change in values
- 4) sharp change in negative values

विन्यासों से कुओं में जल बहाव को SP अभिलेख कैसे दिखाता है ?

- 1) धनात्मक परिमाण से
- 2) ऋणात्मक परिमाण से
- 3) परिमाण में बगैर बदलाव से
- 4) ऋणात्मक परिमाण में अप्रत्याशित बदलाव से

Ques #:39

To note water from different aquifers intersected by a well, readings are taken of

- 1) SP log
- 2) Resistivity log
- 3) Temperature log
- 4) Calliper log

यदि कुँए में कई जलभृतों से जल आ रहा है तो उसका पता किससे चलता है ?

- 1) SP लोग (अभिलेख)
- 2) रेसिस्टीविटी लोग (अभिलेख)
- 3) तापीय लोग (अभिलेख)
- 4) कैलिपर लोग (अभिलेख)

Ques #:40

Well diameters along a well can be measured with the help of

- 1) Calliper log
- 2) Neutron log
- 3) Temperature log
- 4) Resistivity log

कुएँ की गहराई में कुएँ के बदलते व्यास का पता किस से लगाया जाता है ?

- 1) कैलिपर लोग (अभिलेख)
- 2) न्यूट्रॉन लोग (अभिलेख)
- 3) तापीय लोग (अभिलेख)
- 4) रसिस्टीविटी लोग (अभिलेख)

Ques # :41

Tracer-techniques are adopted to note

- 1) Ground water velocity
- 2) Ground water quality
- 3) Ground water occurrence

4) Ground water permeability

ट्रेसर-पद्धति क्या पता करने को अपनाई जाती है ?

- 1) भू जल का वेग
- 2) भू जल की गुणवत्ता
- 3) भू जल की उपस्थिति
- 4) भूजल की पारगम्यता

Ques # :42

Which is used in Radioactive logs

- 1) Neutron rays
- 2) gamma particles
- 3) Both Gamma particles and neutron rays
- 4) all of these

रेडियोएक्टिव लोग में किस का उपयोग होता है ?

- $^{1)}$ न्यूट्रॉन किरणे
- 2) गामा पार्टिकल
- 3) गामा पार्टिकल तथा न्यूट्रॉन किरणे
- ⁴⁾ सभी

Ques # :43

The equation $h^2 = W/.0512K (R^2 - r^2)$ shows depth to salt water at any location is function of

- 1) rainfall recharge, size of the island and permeability
- 2) rainfall recharge and permeability
- 3) rainfall recharge and size of the island
- 4) size of the island and permeability

समीकरण $h^2 = W/.0512K (R^2 - r^2)$ का किसी स्थान पर क्षारीय जल की गहराई दर्शाना किस से सम्बंधित है ?

- 1) वर्षा जल पुनर्भरण , द्वीप का विस्तार और पारगम्यता
- 2) वर्षा जल प्नर्भरण तथा पारगम्यता
- 3) वर्षा जल प्नर्भरण तथा द्वीप का विस्तार
- 4) द्वीप का विस्तार तथा पारगम्यता

Ques #:44

Modification in composition of sea water entering an aquifer can occur

- 1) by base exchange between water and minerals of aquifer
- 2) sulphate reduction, solution and precipitation
- 3) by base exchange between water and minerals of aquifer & sulphate reduction, solution and precipitation
- 4) None of these

समुद्र के लवणीय जल का जलभृत में प्रवेश के दौरान बदलाव निम्न कारणों से हो सकता है ?

- 1) जल तथा जलभृत के खनिजो में बेस-एक्सचेंज द्वारा
- ²⁾ सल्फेट अपचयन, घुलन तथा अवक्षेपण से
- 3) जल तथा जलभृत के खिनजो में बेस-एक्सचेंज द्वारा तथा सल्फेट अपचयन, घ्लन तथा अवक्षेपण से
- 4) इनमे से कोई नहीं

Ques # :45

One of the following does not have significant contribution in establishing hydraulics of ground water.

- 1) Henry Darcy
- 2) N. Steno
- 3) J. Dupuit
- 4) A. Theim

निम्न	में से	किसी	एक का	भू जल	- जलगति	में यो	गदान नर्ह	तें है ?
1) .	_	_						

- $^{1)}$ हेनरी डार्सी
- ²⁾ एन स्टेनो
- $^{3)}$ जे डूपिट
- ⁴⁾ ऐ थियम

Ques #:46

Initially dry soil that will absorb maximum moisture in contact with atmosphere is called as

- 1) wilting point
- 2) capillary fringe
- 3) hygroscopic coefficient
- 4) moisture point

सूखी मिट्टी वातावरण के सम्पर्क में आने पर अधिकतम नमी सोख लेती है उस बिंदु को क्या कहते है ?

- 1) विल्टिंग बिंदु
- 2) केशिका फ्रिंज
- 3) अद्रताग्रही गुणांक
- $^{4)}$ नमी बिंद्

Ques # :47

Soil moisture is measured by Neutron Scattering based on the fact that fast neutrons are slowed by collisions with

- 1) hydrogen
- 2) oxygen
- 3) chlorine
- 4) water

न्यूट्रॉन प्रकीर्णन विधि से मिट्टी की नमी नापी जाती है, यह संभव है क्योंकि न्यूट्रॉन का टकराव निम्न से होता है

1) हाइड्रोजन

- $^{2)}$ ऑक्सीजन
- 3) क्लोरीन
- ⁴⁾ जल

Ques # :48

As per Darcy's law Flow rate through porous media is

- 1) inversely proportional to head loss
- 2) not in accordance with hydraulic gradient
- 3) proportional to flow path length
- 4) None of these

डार्सी का नियम कहता है की छिद्रित माध्यम में प्रवाह की गति

- 1) दबाव की कमी (हैड लॉस) के प्रतिपानुपति है
- 2) हाइड्रोलीक ढलान (ग्रेडिएंट) के अनुसार नहीं होती है
- 3) बहाव की सीमा के आन्पातिक है
- 4) इनमे से कोई नहीं

Ques # :49

The Water which, results due to mixing of fresh water and sea water is -

- 1) Saline Water
- 2) Alkaline Water
- 3) Brakish Water
- 4) Acidic Water

वह जल जो स्वच्छ जल और समुद्री जल के मिश्रण से बनता है

- 1) लवणीय जल
- 2) क्षारीय जल
- 3) नूनखरा जल

$^{4)}$ अम्लीय जल

Ques # :50

Permeablity K is expressed as Q/A(dh/dl) that shows K has dimensions of

- 1) velocity
- 2) area
- 3) acceleration
- 4) gravity

पारगम्यता K विवेचित होती है; Q/A(dh/dl) , तदनुसार K का क्या परिमाप है ?

- वेग
- क्षेत्र
- त्वरण
- 4) गुरुत्व

Ques # :51

Equilibrium (Thiem) equation $Q = 2\pi Kb h - h_w /ln (r_o/r_w)$ enables determination of

- 1) permeablity from a pumped well
- 2) porosity from a pumped well
- 3) permeability from nonpumping well
- 4) transmissivity from nonpumped well

थियम समीकरण $Q = 2\pi Kb h - h_w /ln (r_o/r_w)$ से किस का पता लगाया जाता है ?

- 1) पम्पित कुँए से पारगम्यता
- 2) पम्पित कुँए से छिद्रुलता
- ³⁾ स्थिर कुँए से पारगम्यता
- 4) स्थिर कुँए से संचारण

Ques # :52

Theis equation $h_o - h = 114.6Q/T$ W(u), where W(u) is called as well function. The argument (u) is given by

- 1) $u = 1.87r^2S/Tt$
- $u = 2.87r^2S/Tt$
- $u = 3.87r^2S/Tt$
- $u = 4.87r^2S/Tt$

थीस समीकरण $h_o - h = 114.6Q/T \ W(u)$, में W(u) को वेळ फंक्शन कहते हैं (u) किसके बराबर है ?

- 1) $u = 1.87r^2S/Tt$
- $u = 2.87r^2S/Tt$
- 3) $u = 3.87r^2S/Tt$
- $u = 4.87r^2S/Tt$

Ques # :53

The resistivity of Fresh water is around '20 ohm m', its conductivity therefore should be about

- 1) 500 Seimens/cm
- 2) 500 microS/cm
- 3) 500 microS/meter
- 4) 500 microS/feet

शुद्ध जल की रसिस्टीविटी लगभग ' 20 ohm m ' है तो इसकी चालकता क्या होगी ?

- 1) 500 Seimens/cm
- 2) 500 microS/cm
- 3) 500 microS/meter
- 4) 500 microS/feet

Ques #:54

The units of Yield, Transmissivity and drawdown are

- 1) m³/s, m²/s and m respectively
- 2) m²/s, m²/s and m respectively
- 3) m³/s, m²/s and m² respectively
- 4) m/s, m²/s and m respectively

यील्ड़, ट्रांस्मिसिविटी तथा जलावतलन को किस में नापा जाता है ?

- 1) m³/s, m²/s तथा m
- 2) m²/s, m²/s तथा m
- 3) m³/s, m²/s तथा m²
- ⁴⁾ m/s, m²/s तथा m

Oues #:55

Magnetic resonance sounding method for ground water exploration has many advantages such as: it is only geophysical method that is capable of estimating permeability but has disadvange such as:

- 1) not suitable for volcanic rocks
- 2) it is sensitive to power lines, pipes, fences
- 3) the maximum depth which can be reached to detect an aquifer layer is 150m.
- 4) all of these

भू जल अन्वेषण के लिये मैग्नेटिक रेजोनेंस विधि में बहुत खूबियां है जैसे इस विधि से हम पारगम्यता को नाप लेते है , इस विधि की क्या हानिया है ?

- 1) लावा चट्टानों में यह काम नहीं कर सकती
- ²⁾ पॉवर लाइन , पाइप तथा जालियों से इसकी गणना गड़बड़ा जाती है
- $^{3)}$ $_{150~\mathrm{m}}$ जलभृत गहराई की सीमा जहाँ तक यह नापने में सक्षम है
- ⁴⁾ सभी

Ques #:56

Diseases which can spread through ground water are

- 1) typhoid, cholera and Hypertension
- 2) typhoid, amoebic dysentery and diabetes
- 3) typhoid, amoebic dysentery, infectious hepatitis and malaria
- 4) typhoid, cholera, amoebic dysentery and infectious hepatitis

भू जल से निम्न बीमारियां हो सकती है -

- 1) टाइफाइड , हैजा और उच्च रक्तचाप
- ²⁾ टाइफाइड, अमीबिक दस्त और मधुमेह
- 3) टाइफाइड, अमीबिक दस्त , संक्रामक यकृतशोथ और मलेरिया
- ⁴⁾ टाइफाइड, हैजा,अमीबिक दस्त और संक्रामक यकृतशोथ

Ques	#	-57
Ques	#	.57

The acceptable	concentration	of f	luoride	in	drinking	water	is	about
Tire week process					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-~	

- 1) 1.5 mg/L.
- 2) 1.5 g/L
- 3) $1.5 \mu g/L$
- 4) 1.5 Kg/L

पीने योग्य जल में फ्लोराइड की मात्रा कितनी होनी चाहिए ?

- 1) 1.5 mg/L.
- 2) 1.5 g/L
- 3) $1.5 \, \mu g/L$
- 4) 1.5 Kg/L

Ques #:58

The acceptable level as defined by WHO for maximum concentrations of arsenic in safe drinking water is

- 1) 0.01 mg/L.
- 2) 0.10 mg/L
- 3) 1.00 mg/L
- 4) 0.01 g/L

WHO द्वारा प्रमाणित आर्सेनिक की मात्रा सुरक्षित पेय जल में कितनी है ?

- 1) 0.01 mg/L.
- 2) 0.10 mg/L
- 3) 1.00 mg/L
- 4) 0.01 g/L

Ques # :59

Arsenic contamination of the groundwater in Bangladesh around Ganga Delta is a serious problem. It is one of the solutions is:

- 1) to tap into deeper groundwater
- 2) to tap into shallow groundwater

- 3) to tap very shallow groundwater
- 4) None of these

बांग्लादेश में आर्सेनिक से संक्रमित जल एक गंभीर समस्या है , यह समस्या गंगा डेल्टा क्षेत्र के आस पास है , इसे दूर करने का एक उपाय क्या हो सकता है

- 1) बहुत गहरे भू जल का उपयोग
- ²⁾ छिछले भू जल का उपयोग
- 3) बहुत छिछले भू जल का उपयोग
- 4) इनमे से कोई नहीं

Ques #:60

Fluoride concentration in water can be reduced by using adsorbents such as:

- 1) activated charcoal and alumina
- 2) bentonite and kaolinite
- 3) red mud and rice husk
- 4) all of these

जल में फ्लोराइड की मात्रा निम्न अधिशोषी के उपयोग से कम की जा सकती है

- 1) सक्रिय चारकोल तथा एल्मिना
- 2) बेंटोनाइट तथा केओलिन
- 3) लाल मिट्टी तथा चावल की भूसी
- ⁴⁾ सभी

Ques # :61

The ground water problems being faced in Jodhpur are:

- 1) Declining water level, over exploitation of groundwater
- 2) Fluoride and nitrate pollution
- 3) Rising water level, leakage through sewerage system

4) all of these

जोधपुर में भू जल से सम्बंधित क्या समस्या है ?

- 1) पानी का कम हो जाना तथा आवश्यकता से अधिक दोहन
- 2) फ्लोराइड तथा नाइट्रेट का प्रदुषण
- 3) जल स्तर का ऊपर आ जाना तथा मॉल संक्रमित पानी का रिसाव
- ⁴⁾ सभी

Ques #:62

Roof top rain water harvesting has been made mandatory in state owned buildings of plot size more than

- 1) 300 sq.m.
- 2) 500 sq.m
- 3) 600 sq.m
- 4) 200 sq.m

वर्षा जल संग्रहण के लिये सरकारी नियम के अनुसार निम्न किस नाप के प्लाट से ज्यादा होने पर (सरकारी बिल्डिंगों) यह जरुरी होगा ?

- 1) 300 sq.m.
- 2) 500 sq.m
- 3) 600 sq.m
- 4) 200 sq.m

Ques # :63

Tick mark the correct statement

- 1) Recharge to aquifer during normal rain fall in Western Rajasthan is inadequate
- 2) Major portion of precipitation in Western Rajasthan gets lost as run off
- 3) Identification of potential aquifers is still needed in Western Rajasthan
- 4) all of these

सही कथन चिन्हित कीजिये:-

1)

औसत वर्षा जल पश्चिमी राजस्थान में जलभृत प्नर्भरण के लिये नाकाफी है

- 2) पश्चिमी राजस्थान में वर्षा जल का बड़ा हिस्सा अप्रवाहित हो जाता है
- 3) पश्चिमी राजस्थान में उपजाऊ जलभृतों की पहचान अभी और करनी बाकी है
- ⁴⁾ सभी

Ques #:64

The advantages of watershed development are:

- 1) Arrests soil erosion, improves soil moisture and recharges ground water
- 2) Reclaims eroded land and reduces flood
- 3) Arrests soil erosion, improves soil moisture and recharges ground water and Reclaims eroded land and reduces flood, both are correct
- 4) Only Arrests soil erosion, improves soil moisture and recharges ground water, is correct

जलसंभर (वाटरशेड) विकास क्यों आवश्यक है ?

- 1) मृदा का कटाव और नमी रोकता है तथा भू जल प्नर्भरण में सहायक है
- 2) अनुपयुक्त भूमि को पुन: उपयुक्त बनाता है तथा बाढ़ रोकने में सहायक है
- 3) मृदा का कटाव और नमी रोकता है तथा भू जल पुनर्भरण में सहायक है तथा अनुपयुक्त भूमि को पुन: उपयुक्त बनाता है तथा बाढ़ रोकने में सहायक है, दोनों सही है
- 4) केवल ;मृदा का कटाव और नमी रोकता है तथा भू जल पुनर्भरण में सहायक है; सही है

Ques #:65

How much of Earth's water is stored in underground aquifiers?

- 1) Less than 1 %
- 2) 2%
- 3) 9.5 %
- 4) 5 %

पृथ्वी का कितना प्रतिशत जल भूमिगत जलभृत के रूप में एक्विफर में भंडारित होता है

1)

1 % से कम
2) 2 %
3) 9.5 %
4) 5 %
Ques # :66
An area of land that contains a common set of streams and rivers that all drain into a single larger body is called watershed for e.g.,
1) Mississippi River
2) Jaisamand Lake
3) Stream and ocean
4) all of these
वह भूमि का हिस्सा जिसमे सामान्यत: एक ही सेट की नदिया होती है तथा सभी नदी नाले एक हि स्थान पर पानी जमा करते है , वाटरशेड कहलाता है ,
उदहारण के लिये
$^{1)}$ मिसिसिपी नदी
$^{2)}$ जयसमंद ताल
$^{3)}$ नदी तथा सम्द्र
⁴⁾ सभी
Ques # :67
Rainfall is the main source of ground water recharge, The average annual rainfall in Western Rajasthan is about
1) 10cm
2) 30cm
3) 100cm
4) 1000mm

पश्चिमी राजस्थान में भूजल पुनर्भरण का मुख्य स्त्रोत वर्षाजल है , यहाँ औसतन प्रति वर्ष कितनी बारिश होती है ?

1) 10cm 2) 30cm 3) 100cm Ques # :68

A confined aquifer has a transmissivity of 40m²/day. The slope of the piezometric surface is 0.25 m/km. How much water per day flows through an aquifer per kilometre width of the aquifer ? (hint Q = WTi)

- 1) 100 m³/day
- 2) 10 m³/day
- 3) 1 m³/day
- 4) 1000 m³/day

परिरुद्ध जलभत की ट्रांस्मिसिविटी है $40\text{m}^2/\text{day}$ तथा पीजोमेट्रिक सतह का ढलान है 0.25 m/kmइस जलभृत में प्रति दिन उसकी प्रति km चौड़ाई के हिसाब से कितना पानी बहेगा ? (hint Q = WTi)

- 1) 100 m³/day
- 2) 10 m³/day
- 3) 1 m³/day
- 4) 1000 m³/day

Ques # :69

- 1) salt domes and brine aquifers
- 2) subterranean cavity created by underground nuclear explosion
- 3) deep mines
- 4) all of these

रेडियोएक्टिव कचरा निस्तारण भूजल को प्रदूषित कर सकता है , इसके निस्तारण की संभावित जगह निम्न हो सकती है

- 1) साल्ट डॉम और खारे जलभृत
- ²⁾ भूमिगत नयूक्लिअर टेस्ट से बने गड्ढे
- 3) गहरी खदाने
- ⁴⁾ सभी

Ques #:70

Ground water contamination due to coal mining is caused by

- 1) oxidation of pyrite
- 2) formation of sulfuric acid and iron hydroxide
- 3) decrease in pH due to sulphate concentration
- 4) all of these

कोयला खनन से भूजल निम्न कारण से प्रद्षित हो जाता है

- 1) पाइराइट के ऑक्सीकरण से
- 2) सल्फ्यूरिक अम्ल तथा आयरन हाइड्रोऑक्साइड बनने से
- 3) सल्फेट के कारण pH घटने से
- ⁴⁾ सभी

Ques #:71

Baoris and Jhalra's like traditional water bodies of western Rajasthan are:-

- 1) Surface and ground water bodies
- 2) Only surface water bodies

- 3) Only ground water bodies
- 4) None of these

पश्चिम राजस्थान के बावड़ी एवं झालरे जैसी परम्परागत जल स्त्रोत है :-

- 1) सतही एवं भूजल स्त्रोत
- $^{2)}$ केवल सतही जल स्त्रोत
- $^{3)}$ केवल भूजल स्त्रोत
- 4) इनमें से कोई नहीं

Ques #:72

Remote Sensing for ground water involves sensing of

- 1) energy source and radiation
- 2) interaction with targets
- 3) atmospheric interaction
- 4) all of these

भूजल की खोज में सुदूर संवेदन में निम्न का संवेदन किया जाता है

- 1) रेडिएशन तथा एनर्जी स्त्रोत
- 2) टारगेट से सम्बन्ध
- 3) वातावरणीय सम्बन्ध
- ⁴⁾ सभी

Ques # :73

Exploration by resistivity method helps in assessing the quality of groundwater because

- 1) Resistivity increases with more dissolved solids in water
- 2) Distilled water has very high conductivity
- 3) Resistivity decreases with increasing amount of ions
- 4) Water is not a very good electrolyte

रसिस्टीविटी अन्वेषण विधि से भू जल की गुणवत्ता का पता लग जाता है ; क्योंकि

- 1) जल में घ्ले पदार्थी से रसिस्टीविटी बढ़ जाती है
- 2) आसुत जल की चालकता बहुत अधिक होती है
- 3) रसिस्टीविटी घट जाती है जब आयनों की तादात बढ़ जाती है
- 4) जल अच्छा इलेक्ट्रोलाइट नहीं होता

Oues #:74

Free air correction is applied in gravity method of exploration because

- 1) measured value of gravity decrease with the increase in the elevation
- 2) measured value of gravity increases with the increase in the elevation
- 3) the equation $g_o = G M/R^2$ is not correct
- 4) isostatic correction is not reqired in geodetic survey

ग्रेविटी अन्वेषण विधि में फ्री-एयर-करेक्शन का उपयोग होता है, क्योंकि

- 1) ऊंचाई बढ़ने से ग्रेविटी का नापित परिमाण घट जाता है
- 2) ऊंचाई बढ़ने से ग्रेविटी का नापित परिमाण बढ जाता है
- ³⁾ समीकरण g_o = G M/R² सही नहीं है
- 4) जियोडेटिक सर्वे में आइसोस्टेटिक करेक्शन की आवश्यकता नहीं होती

Ques # :75

The magnetic minerals such as magnetite, ilmenite, pyrrhotite etc locally influences the Earth's field depending upon a factor called

- 1) dielectric constant
- 2) conductivity
- 3) permeability

4) resistivity

चुम्बकीय खनिज जैसे मैग्नेटाइट इल्मेनाइट, पिरोटाइट आदि पृथ्वी के चुम्बकीय फील्ड को प्रभावित निम्न कारक के आधार पर करते है

- 1) पारदुतिक स्थिरांक
- 2) चालकता
- 3) पारगम्यता
- 4) रसिस्टीविटी

Ques #:76

The variation in the velocity of elastic seismic waves is dependent upon the rock type and its degree of consolidation therefore

- 1) their velocity will not vary for the same rock type such as shale
- 2) their velocity will vary for the same rock type such as shale
- 3) their velocity will not vary for the same rock type such as granite
- 4) their velocity will not vary for the same rock type such as sandstone

सिस्मिक किरणों के वेग में परिवर्तन चट्टानों के प्रारूप और ठोसता पर निर्भर करता है इसलिए

- 1) समान रूप की चट्टान जैसे शेल में वेग नहीं बदलेगा
- 2) समान रूप की चट्टान जैसे शेल के वेग में परिवर्तन होगा
- 3) समान रूप की चट्टान जैसे ग्रेनाइट का वेग वहीं रहेगा
- 4) समान रूप की चट्टान जैसे सैंडस्टोन का वेग नहीं बदलेगा

Ques # :77

To determine accurate depth of the beds especially to locate structural traps for ground water, the exploration method employed is

- 1) electromagnetic method
- 2) gravity metod
- 3) seismic reflection method
- 4) magnetic metod

चट्टानों की परत की एक दम सही गहराई का पता लगाने के लिये , खासकर भूजल के लिये संरचनात्मक ट्रैप्स की जानकारी के लिये किस अन्वेषण विधि का प्रयोग किया जाता है ?

- 1) इलेक्ट्रोमैग्नेटिक
- ²⁾ ग्रेविटी
- 3) सिस्मिक रिफ्लेक्शन
- 4) मैग्नेटिक

Ques #:78

Mark the true statement

- 1) compressed air is used in pneumatic drills
- 2) percussion drill can not be used for making blast holes
- 3) hammer drills can not be used as hand held drills
- 4) diamond drills are advisable in the soft rock formations

सही कथन चिन्हित कीजिये:-

- 1) न्यूमेटिक ड्रिल में संक्चित हवा का प्रयोग होता है
- 2) परकशन ड़िल से ब्लास्ट छिद्र नहीं किये जाते
- 3) हैमर ड्रिल को हैण्ड हेल्ड ड्रिल की तरह नहीं उपयोग किया जाता
- 4) डायमंड ड्रिल नरम चट्टानों के लिये उपयोगी नहीं है

Ques #:79

Ground penetrating radar(GPR) and seismic reflection techniques are analogous because

- 1) both techniques record the time required for a wave to travel to the interface between two formations and then return to the surface
- 2) both techniques record the velocity required for a wave to travel to the interface between two formations and then return to the surface
- 3) both techniques do not record the time required for a wave to travel to the interface between two formations and then return to the surface
- 4) both techniques do not record the velocity required for a wave to travel to the interface between two formations and then return to the surface

जीपीआर तथा सिस्मिक रिफ्लेक्शन तकनिकी विधि सामान है क्योंकि

- 1) दोनों तकनीकों में तरंगो का दो परतो के इंटरफ़ेस तक जाने आने का समय नापा जाता है
- 2) दोनों तकनीकों में तरंगो का दो परतो के इंटरफ़ेस तक जाने आने की गति नापी जाती है
- 3) दोनों तकनीकों में तरंगो का दो परतो के इंटरफ़ेस तक जाने आने का समय नापा नहीं जाता है
- 4) दोनों तकनीकों में तरंगो का दो परतो के इंटरफ़ेस तक जाने आने की गति नहीं नापी जाती है

Oues #:80

If the pumping rate is 1000 m³ /day and the drawdown is 30 m

- 1) the specific capacity of the well is 33.3 m³/day/m
- 2) the transmissivity of the well is 33.3 m³/day/m
- 3) the storage coefficient of the well is 33.3 m³/day/m
- 4) All of these

यदि प्रमिपंग रेट 1000m³ / day और जलप्लावन (ड्राडाउन) 30 m हैं तो

- 1) कुँए की विशिष्ट क्षमता होगी 33.3 m³ / day /m
- ²⁾ कुँए की ट्रांरिमिसिविटी होगी 33.3 m³ / day /m
- 3) कुँए की भण्डारण गुणांक होगा 33.3 m³ / day /m
- ⁴⁾ सभी

Ques #:81

For industrial, municipal or irrigation purpose the transmissivity of aquifer should generally be more than

1) 125 m²/day

- 2) 125 m³/day/m
- 3) 125 m³/day
- 4) 225 m²/day

औद्योगिक , म्युनिसिपल तथा सिंचाई के लिये जलभृत की ट्रांस्मिसिविटी सामान्यत: निम्न से अधिक होनी चाहिए

- 1) 125 m²/day
- 2) 125 m³/day/m
- 3) 125 m³/day
- 4) 225 m²/day

Ques # :82

The flow of groundwater to the well forms a cone of depression. The volume of cone is

- $^{1)} 1/3 4\pi r^{3} h$
- $^{2)} 1/3 \pi r^{3}$
- $^{3)} 1/3 \pi r^{2} h$
- 4) $4/3 \, \pi r^3$

कुँए से जल प्लावन के दौरान कोन ऑफ़ डिप्रेशन (अवनमन शंकु) बनता है , शंकु (कोन) का आयतन निम्न होता है -

- $^{1)} 1/3 4\pi r^{3} h$
- $^{2)} 1/3 \pi r^{3}$
- $^{3)} 1/3 \pi r^{2} h$
- 4) $4/3 \, \pi r^3$

Ques # :83

Groundwater flow velocity can be measured with the help of

- 1) Can not be measured
- 2) Tracers
- 3) dowsing
- 4) It remains constant

भूजल की वेलोसिटी (वेग) का आकलन किसकी मदद से किया जा सकता है ?

- 1) नहीं मापी जा सकती
- 2) ट्रेसर की सहायता से
- 3) ड़ोसिंग से
- ⁴⁾ अटल रहती है

Ques #:84

The Flow Net is

- 1) A set of intersecting flow lines and equipotential lines
- 2) A set of meandering river lines
- 3) A set of wind blowing directions
- 4) A set of groundwater velocity lines

फ्लो नेट क्या होता है ?

- 1) आपस में काटती फ्लो रेखाओ और समविभव रेखाओ का सेट
- 2) घुमावदार नदियों की रेखाओं के सेट
- 3) हवा की दिशाओं के सेट
- 4) भूजल वेग रेखाओं के सेट

Water having more than 100,000 mg/l T D S is called

- 1) Saline water
- 2) Brackish water
- 3) Brine water
- 4) Fresh water

भूजल जिसका TDS 100,000 mg/1 से अधिक है, क्या कहलाता है ?

- ¹⁾ खारा पानी
- 2) नुनखरा पानी
- $^{4)}$ शुद्ध पानी

Ques # :86

Radionuclide contamination in groundwater is measured in

- 1) ppm
- 2) ppb
- 3) pCi/l
- 4) gm/l

भूजल में रेडियोधर्मी प्रदुषण को किस में नापा जाता है ?

- 1) ppm
- 2) ppb
- 3) pCi/l
- 4) gm/l

Ques # :87

The energy responsible for generating tornadoes and hurricane comes from water because it has

- 1) High heat capacity
- 2) Highest heat of vaporization

- 3) Highest solubility
- 4) Quick dissociation

तूफान और बवंडर उत्पन्न करने वाली शक्ति पानी से आती है क्यों ?

- 1) पानी की ताप क्षमता बहुत ज्यादा है
- 2) वाष्पीकरण की उष्मा सर्वाधिक है
- 3) सर्वाधिक घुलनशीलता है
- 4) पानी में पृथक्करण जल्दी हो जाता है

Ques #:88

The source of Organo-mercury compounds as pollutants in ground water are

- 1) Gasoline
- 2) Fungicides
- 3) Fertilizers
- 4) Septic tanks

जल में जीव-मरकरी योगिक प्रदूषको का स्त्रोत क्या है ?

- 1) गैसोलीन
- 2) फफूंदनाशी
- ³⁾ उर्वरक
- 4) सेप्टिक टैंक

Ques # :89

The source of lead in groundwater as pollutant is

- 1) Gasoline
- 2) Fungicides
- 3) Fertilizers
- 4) Septic tanks

भूजल में लेड प्रदूषक का स्त्रोत क्या है ?

- 1) गैसोलीन
- 2) फफ्रंदनाशी
- ³⁾ उर्वरक
- 4) सेप्टिक टैंक

Ques #:90

Ozone in the atmosphere is destroyed by

- 1) photodissociation by UV rays
- 2) reaction with NO
- 3) reaction with chlorofluorcarbons
- 4) all of these

वायुमंडल में ओजोन कैसे नष्ट हो जाती है

- 1) UV किरणों द्वारा फोटोडिसोसियेशन
- 2) NO से अभिक्रिया के कारण
- 3) क्लोरोफ्लोरोकार्बन से क्रिया के कारण
- ⁴⁾ सभी

Ques # :91

Relative humidity is

- 1) amount of water vapour per m³ of air
- 2) % of maximum amount of water vapour that air can hold
- 3) amount of water vapour per m³ of air and % of maximum amount of water vapour that air can hold, both are correct
- 4) None of these

सापेक्षित आद्रता क्या होती है

- 1) हवा में नमी की प्रति m³ मात्रा
- 2) वायु में अधिकतम नमी की मात्रा का प्रतिशत
- $^{3)}$ हवा में नमी की प्रति $\mathrm{m}^{_{3}}$ मात्रा तथा वायु में अधिकतम नमी की मात्रा का प्रतिशत, दोनों सही है
- 4) इनमे से कोई नहीं

Ques #:92

The ocean have an average salinity of 34.77 % while fresh water has

- 1) 0 % salinity
- 2) salinity of 0.2 to 4%
- 3) 0.2 % salinity
- 4) 4 % salinity

महासागरों की औसत लवणता 34.77 % है, जबकि शुद्ध जल की लवणता कितनी है ?

- 1) 0 %
- 2) 0.2 % 社 4 %
- 3) 0.2 %
- 4) 4 %

Ques #:93

Monsoon is the wind system that

- 1) never fluctuates
- 2) maintains its course in the opposite season
- 3) reverses its course in the opposite seasons
- 4) has nothing to do with the rotation of the earth

मानसून वो पवन तंत्र है जो

- 1) स्थिर रहता है
- 2)

विपरीत मौसम में दिशा नहीं बदलता है

- 3) विपरीत मौसम में दिशा बदल देता है
- 4) पृथ्वी के घूर्णन से सम्बन्ध नहीं रखता

Ques #:94

Which feature is a sign of Karst Topography?

- 1) Sinkholes
- 2) Artesian Wells
- 3) Moraines
- 4) Anticline

कार्स्ट स्थलाकृति का चिन्ह कौनसा है ?

- 1) सिंक होल
- ²⁾ अर्टिसियन वेल
- ³⁾ हिमोद
- 4) एन्टीकलाइन

Ques #:95

During ice ages the sea level was:-

- 1) 5km lower than today
- 2) same as today
- 3) higher than today
- 4) 120m lower than today

हिम युग में समुद्र का स्तर क्या था ?

- 1) वर्तमान से 5 km निचे
- 2) वर्तमान जितना
- 3)

वर्तमान से अधिक

⁴⁾ वर्तमान से 120 m कम

Ques #:96

Water is critical in maintaining our uniform body temperature because it has:

- 1) High heat capacity
- 2) Highest heat of vaporization
- 3) Highest solubility
- 4) Quick dissociation

मानव के शरीर के तापमान को बनाये रखने में जल का बहुत महत्व है क्योंकि :-

- $^{1)}$ पानी की ताप क्षमता बहुत ज्यादा है
- 2) वाष्पीकरण की उष्मा सर्वाधिक है
- 3) सर्वाधिक घुलनशीलता है
- 4) पानी में पृथक्करण जल्दी हो जाता है

Ques #:97

Water in the atmosphere:

- 1) Radiates back heat received from the Sun
- 2) Cannot radiate back heat received from the Sun
- 3) Has no effect on heat received from the Sun
- 4) Makes the Sun look brighter

वायुमंडल में जल की क्या भूमिका है ?

- 1) सूर्य की उर्जा को वापस विकीर्ण कर देता है
- 2) सूर्य की उर्जा को वापस विकीर्ण नहीं करता है
- 3) सूर्य से प्राप्त ऊर्जा का इस पर असर नहीं होता
- 4) सूर्य ज्यादा उज्जवल दिखाता है

Oues #:98

'Atmospheric windows' useful in Remote Sensing are created because:

- 1) Ozone absorbs UV radiation from the Sun
- 2) Carbon dioxide absorbs radiation in the infrared portion of the spectrum
- 3) Water vapour absorbs portions of the infrared and microwave radiation
- 4) all of these

रिमोट सेंसिंग में लाभकारी वायुमंडलीय गवाक्ष कैसे बनती है ?

- 1) ओजोन सूर्य के रेडिएशन को सोख लेती है
- 2) स्पेक्ट्रम के इन्फ्रारेड हिस्से को कार्बन डाई ऑक्साइड सोख लेती है
- $^{3)}$ इन्फ्रारेड तथा माइक्रोवेव रेडिएशन को जलवाष्प (वाटर वेपर) सोख लेता है
- ⁴⁾ सभी

Ques #:99

Horizontal permeable conduit for collecting ground water by gravity flow is known as -

- 1) Tube well
- 2) Infiltration gallery
- 3) Gravity gallery
- 4) Dugwell

सामानांतर पारगम्य पाइप जिनमे ग्रेविटी बहाव के कारण जल इकट्ठा किया जाता है उन्हें क्या कहते है ?

- $^{1)}$ ट्यूब वेल
- 2) अंत:स्यंदन दीर्घा
- 3) ग्रेविटी दीर्घा
- ⁴⁾ बावडी

High amount of Sodium in water (sodium hazard) causes:

- 1) Reduction in soil permeability
- 2) Hardening of soil
- 3) Reduction in soil permeability and Hardening of soil, Both are correct
- 4) Only (Hardening of soil) is correct

जल में आवश्यकता से अधिक सोडियम की मात्रा से क्या होता है ?

- 1) मिट्टी की पारगम्यता कम हो जाती है
- 2) मिट्टी कठोर हो जाती है
- 3) मिट्टी की पारगम्यता कम हो जाती है तथा मिट्टी कठोर हो जाती है, दोनों सही है
- 4) सिर्फ (मिट्टी कठोर हो जाती है) सही है