Challot 121811 HATUI 2011

प्रश्न पुस्तिका / QUESTION BOOKLET विषय / Subject : 2cett Civil Eng. Tech. Edu. Dept. 2011

Civil Engineering

कोड / Code: 03

पुस्तिका में पृष्ठों की संख्या / Number of Pages in Booklet: 16

पुस्तिका में प्रश्नों की संख्या / Number of Questions in Booklet : 100

Civil	Engineering
03	🛕 बुकलेट
विषय कोड	ि सीरी ज

समय / Time : 2 घंटे / Hours

पूर्णांक / Maximum Marks : 100

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

INSTRUCTIONS

- I. Answer all questions.
- 2. All questions carry equal marks.
- 3. Only one answer is to be given for each question.
- 4. If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- 7. The candidate should ensure that Series Code of the Question Paper Booklet and Answer Sheet must be same after opening the envelopes. In case they are different, a candidate must obtain another Question Paper of the same series. Candidate himself shall be responsible for ensuring this.
- Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable material with him/her will be strictly dealt as per rules.
- Please correctly fill your Roll Number in O.M.R. Sheet. 5 marks will be deducted for filling wrong or incomplete Roll Number.

Warning: If a candidate is found copying or if any unauthorised material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted under Section 3 of the R.P.E. (Prevention of Unfairmeans) Act, 1992. Commission may also debar him/her permanently from all future examinations of the Commission.

	ĺ	_		
- 1	1	7	-31	1
		,	٦.	٠

- 1. सभी प्रश्नों के उत्तर दीजिए ।
- 2. सभी प्रश्नों के अंक समान हैं ।
- प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए!
- एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को मलत माना जाएगा ।
- 5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया हैं। अध्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बवल को उत्तर-पत्रक पर नीले वॉल पाइंट पेन से गहरा करना है।
- 6. प्रत्येक मलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा 03 जायेगा। गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है। किसी भी प्रश्न से संविधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।
- 7. प्रश्न-पत्र पुस्तिका एवं उत्तर एत्रक के लिफाफे की सील खोलने पर यरीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुस्तिका पर वही सीरीज अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई पिन्नता हो तो वीक्षक से प्रश्न-पत्र की ही सीरीज वाला दूसरा प्रश्न-पत्र का लिफाफा प्राप्त कर लें! ऐसा न करने पर जिम्मेदारी अध्यर्थी की होगी।
- 8. मोबाईल फोन अथवा इलेक्ट्रोनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णत्या चर्जित हैं। यदि किसी अभ्यर्थी के पास ऐसी कोई चर्जित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानी पूर्वक सही भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से अनिवार्य रूप से कार्ट आएंगे।

चेतावनी : अगर कोई अध्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, तो उस अध्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराई जायेगी और आर. पी. ई. (अनुचित साधनों की रोकथाम) अधिनियम, 1992 के नियम 3 के तहत कार्यवाही की जायेगी। साथ ही आयोग ऐसे अध्यर्थी को ध्विष्य में होने वाली आयोग की समस्त परीक्षाओं से विवर्णित कर सकता है।

03/CIV-202_A]

[Contd...

1

	1 Fly ash is residue generated (1) Chemical Industries (2) Hydro power plants (3) Nuclear power plants (4) Thermal power plants	from	
03 03 03 03	The minimum longitudinal repercentage of cross—sections (1) 0.6 (3) 1.0		This percentage is
03 03 03 03 03	 In the limit state design of depth of the neutral axis Xu (1) 0.53 (2) 0.48 (3) 0.46 (4) 0.42 		
03 03 03	4 Nominal mix M20 concrete (1) 1:3:6 (3) 1:1.5:3	represent the nearest i (2) 1:2:4 (4) 1:1:2	ngredients ratio as
03 03 03 03 03	5 Bulking of sand is (1) Compaction of sand (2) Segregating sand of particles (3) Increase in volume of same extent (4) Type of sand		noisture upto certain
03	6 Vicats apparatus is used to p (1) Fineness (2) Consistency (3) Soundness (4) Compressive strength	perform the test of	
	7 If a material has identical pro (1) Homogenous (3) Elastic	operties in all directions (2) Isotropic (4) Orthotropic	it is said to be
	03/CIV-202_A	2	[Contd

8	If a composite bar of steel and copper is heated, the copper bar will be under	
	(1) Tension (2) Compression	
	(3) Shear (4) Torsion	
9	Maximum bending moment in a beam occurs where	
	(1) Deflection is zero	
	(2) Shear force is maximum	•
	(3) Shear force is minimum	03
	(4) Shear force changes sign	03
10	Every material obeys the Hooks law within its	03
10	(1) Elastic limit	O 3
	(2) Plastic limit	03
	(3) Limit of proportionality	03
	(4) None of the above	
	_	03
11	The lowest part of a structure which transmits the load to the soil is known as	
	(1) Super structure (2) Plinth	O 3
	(3) Foundation (4) Basement	03
		03
12	The distribution mains are designed for	03
	(1) Maximum daily_demand	03
	(2) Maximum hourly demand	
-	(3) Average daily demand -	03
	(4) Maximum hourly demand on maximum day	03
1.2	Disinfestion of delating system is gameled out to remove	03
13	Disinfection of drinking water is carried out to remove (1) Turbidity	03
	(2) Colour	03
	(3) Odour	O 3
-	(4) Bacteria	
		03
14	Minimum Dissolved Oxygen prescribed for a river stream, to avoid fish kills, is:	l
	(1) 2 ppm (2) 4 ppm	
	(3) 8 ppm (4) 10 ppm	
. -		
03	/CIV-202_A] 3 [[Contd	

	15	For Designing Railways Bridges, the load considered are as per
		(1) IRC class AA
		(2) IRC class 70R
		(3) EUDL as per bridges rules
00		(4) IRC class 70R For Designing and class AA for checking
03		
03		Grading of aggregate in a concrete mix is necessary to achieve
03		(1) Adequate workability
03		(2) Higher density
03		(3) Reduction in voids
03		(4) Better durability
03		
03	17	The pH value of water for quality concrete shall be not less than
		(1) 2 (2) 4
03		(3) 6 (4) 12
03	18	For hon in parameters that 1 C1 1
03	10	For bar in compression, the values of bond stress for bars in tension for M20 grade shall be increased by
03		(1) 15%
03		(2) 25%
03		(3) 60%
03		(4) None of above
03		
	19	Side face reinforcement shall be provided when depth of web in beam
03		subjected to torsion exceed
03		(1) 450 mm
03		(2) 600 mm
03		(3) 750 mm
		(4) 1000 mm
	20	IRC class-B loading is intended for the design of
		(1) temporary bridges
		(2) bridge in B class cities
		(3) box-girder bridges
		(4) suspension bridges
	03/	CTV-202 A1 4 EHILLIONED CO

[Contd...-

03/	CIV-202_A]	5	[Contd	
	-(3) Lime	(4)	Alkalies	
	(1) Alumina	(2)	Silica	
28	Which of the following consti- clay causes the bricks to mel		when present in excess quantity in distort during burning?	
	(3) Torsion	(4)		03
	(1) Bending	(2)		
27			asure or strength of section in	03
25				03
	(3) Elasticity	(4)		03
	(1) Plasticity			03
26			chision when load is ichioved.	03
	m	: .1. ·		03
	(4) Lateral movement of the	e train	11.11.1 mo 1.11.9 on 3. 21.11.9 1.11	03
	<u> </u>	e beari	ing to the movement at the foller	03
	(2) Braking effect	J	•	
	(1) Tractive effect of the di	•		03
25	Racking force on a steel raily	way br	idge is due to	03
	(4) Both (2) and (3)			03
	(3) Double cover type butt	joint	·	03
	(2) Single cover type butt j			03
	(1) Lab joint			0 3
24	Which of the following joint	type i	s not eccentric?	
		()		03
	(3) Thrust	(4)	—	0 3
23	Drops are provided in flat sla (1) Shear	(2)	Bending moment	03
22	Drong are provided in flat als	aba ta	regist	03
	(4) Modular ratio and modu	lus of	elasticity	0 3
	(3) Modulus of elasticity of	steel	and shrinkage of concrete	_ ~
	(2) Modulus of elasticity of	concre	ete and shrinkage of concrete	
	(1) Modulus ration and perc			
22	The loss of prestress due to	shrinka	ge of concrete is the product of	
	(3) Box section	(4)	A channel section	
	(1) A double Tee section	(2)	An I section	
21	For a bridge deck the most e			
			* * + * 11	

	03/	CIV-2	202_A]	6	[Contd
		(4)	Meniscus correction is sub is additive.	otracti	ve and dispersing agent correction
		(3)	subtractive.		and dispersing agent correction is
		(2)	subtractive.		dispersing agent correction are
			additive		
	J4	(1)	•		dispersing agent correction are
03	34	In h	ydrometer analysis for a so	oil ma	ass
03		(3)	Star shakes	(4)	Rind galls
03			Heart shakes		
03	در		ards the pith are known as	, on th	The complete of the 100 and increase.
03	33	The	- radial splits which are wide	r on ti	he outside of the log and narrower
03		(3)	6 hrs.	(4)	None of the above
		(1)	10 hrs.	(2)	8 hrs.
03	32	Final	setting time of OPC, sho	uld n	ot be more than
03		(4)	10203, 5102, A1203, Cao		
03			Fe ₂ O ₃ , Al ₂ O ₃ , SiO ₂ , CaO Fe ₂ O ₃ , SiO ₂ , Al ₂ O ₃ , CaO		
03			Al_2O_3 , CaO , Fe_2O_3 , SiO_2		
03			Al ₂ O ₃ , Fe ₂ O ₃ , CaO, SiO ₂		
D 3			typical composition of OP		
03	31				Portland cement are CaO, Al ₂ O ₃ , scending order of their proportions
03	21	17		lin	Dortland coment ora Coo MO
03			b, c, d, a	(4)	d, b, a, c
03				(2)	c, d, b, æ
D3			correct sequence of these nativeness is:	nethod	ds in the increasing order of their
03		C	Dipping	d	Open tank application
		a	Pressure application	b	Brush application
03	30	Cons	sider the following methods	of p	preservation of timber :
00		(4)	All the above		
		(3)	Increase resistance to cher	nical	attack
		(2)	Increase resistance to crac	king	
		(1)	To reduce shrinkage		
	29	The	advantage of adding pozzla	ains t	o lime is

35	A 600 mm square bearing plate settles by 15 mm in plate load test on a cohesionless soil under an intensity of loading of 0.2 N/mm ² . The settlement of a prototype shallow footing 1 m square under the same intensity of loading.	
	(1) 15 mm	
	(2) Between 15 mm to 25 mm	
	(3) 25 mm	
	(4) Greater than 25 mm	
		03
36	In a soil specimen 70% of particles are passing through 4.75 mm I.S. sieve and 40% of particles are passing through 75 micron I.S. sieve. Its	03
	uniformity coefficient is 8 and coefficient of curvature is 2. As per I.S.	03
	classification this soil is classified as	O 3
	(1) SP (2) GP	
	(3) SW (4) GW	03
		03
37	The setting time of cement can be increased by the addition of	03
	(1) Sodium	03
	(2) Gypsum	03
	(3) Calcium chloride (4) Hydrogen peroxide	03
	(4) Hydrogen peroxide	03
38	The modulus of rupture of concrete gives	
	(1) The direct tensile strength of the concrete	03
	(2) The direct compressive strength of the concrete	03
	(3) The tensile strength of the concrete under bending	O 3
	(4) None of above	03
		03
39	The bond strength of concrete increases with	
	(1) The quantity of steel	03
	(2) The quantity of concrete	03
	(3) The tensile strength of steel	O 3
	(4) All of the above	03
40	In the limit state design of concrete structure, the strain distribution is assumed to be	
	(1) Linear (2) Non linear	
	(3) Parabolic (4) Parabolic and rectangular	
03/	CIV-202_A) 7 [Contd	

41	(1) (2)	0.1% of the web area 0.15% of the web area		pired, in a T-beam will be epending upon the breath of the web
42		•		
	` '			
	` `		isms	
	(4)	Are visible to the naked	eye	·
43	BOD	of safe drinking water sh	ould	be
	1		(2)	10 ppm
	·		•	40 ppm
44				_
	• •		, ,	Rectangular shape Hexagonal shape
45				
			(2)	Acidity of water
	(3)	Carbonates in water	(4)	Sulphates in water
46	A G.I.	pipe has a coating of	-	
	` '		` '	Lead
	(3) 3	Silver	(4)	Aluminium
47				
	• •			Cut back CRMB-55
48	, ,		` ′	
40				
	, -			
49				the best for black cotton soil? Soil-bitumen stabilization
	` '		(4)	
50	Thickn	ness of pavement will be	maxi	imum for
	(1) 5	Soil with CBR 30%	(2)	
	(3)	Soil with CBR 20%	(4)	Soil with CBR 24%
03/0	CIV-202	2_A]	8	[Contd
	42 43 44 45 46 47 48	(1) (2) (3) (4) 42 Patho (1) (2) (3) (4) 43 BOD (1) (3) 44 The t (1) (3) 45 Alum (1) (3) 46 A G.I. (1) (3) 47 Which (1) (3) 48 Which (1) (2) (3) (4) 49 Which (1) (3) 50 Thickr (1) (3) 50 Thickr (1) (3) 50 Thickr (1) (3) 50 Thickr (1) (4) (4)	(1) 0.1% of the web area (2) 0.15% of the web area (3) 0.2% to 0.3% of the web a (4) Half the longitudinal rein 42 Pathogenic bacteria (1) Are harmless (2) Cause diseases (3) Are called coliform organ (4) Are visible to the naked 43 BOD of safe drinking water sh (1) Nil (3) 20 ppm 44 The tank which is generally us (1) Circular shape (3) Hopper bottom shape 45 Alum increases (1) Hardness of water (3) Carbonates in water 46 A G.I. pipe has a coating of (1) Zinc (3) Silver 47 Which type of material is used (1) Grade 80/100 bitumen (3) Emulsion 48 Which stone is the best for roi (1) Aggregate having impact (2) Aggregate having impact (3) Aggregate having impact (4) Aggregate having impact (4) Aggregate having impact (4) Mechanical stabilization will (1) Mechanical stabilization (3) Soil-cement stabilization 50 Thickness of pavement will be (1) Soil with CBR 30%	(1) 0.1% of the web area (2) 0.15% of the web area (3) 0.2% to 0.3% of the web area de (4) Half the longitudinal reinforcer 42 Pathogenic bacteria (1) Are harmless (2) Cause diseases (3) Are called coliform organisms (4) Are visible to the naked eye 43 BOD of safe drinking water should (1) Nil (2) (3) 20 ppm (4) 44 The tank which is generally used for (1) Circular shape (2) (3) Hopper bottom shape (4) 45 Alum increases (1) Hardness of water (2) (3) Carbonates in water (4) 46 A GI. pipe has a coating of (1) Zinc (2) (3) Silver (4) 47 Which type of material is used for (1) Grade 80/100 bitumen (2) (3) Emulsion (4) 48 Which stone is the best for road co (1) Aggregate having impact value (2) Aggregate having impact value (3) Aggregate having impact value (4) Aggregate having impact value (5) Aggregate having impact value (6) Aggregate having impact value (7) Aggregate having impact value (8) Aggregate having impact value (9) Which type of stabilization will be for the content of

. . -- .

03	3/CIV	-202_A]	9	[Contd	·•··-
	(3)		(4)	40%	
00	(1)		(2)	20%	
60	The	e normal consistency of	ordinarv	Portland cement is about	
	(3)	10.5 N/mm ²	(4)	14.0 N/mm ²	
		3.5 N/mm ²	(2)	7.0 N/mm ²	03
59	Cru	shing strength of a first	class b	rick should not be less than	03
	(3)	22%	(4)	4370	
	(1)	15%	(2)	25%	03
58	not	absorb water more than	•	n cold water for 24 hours should 20%	0 3
					03
	(3)	2.5 to 3.0	(4)	3.0 to 3.5	O 3
57	Spe (1)	1.5 to 2.0	(2)	2.0 to 2.5	
57	S n n	cific gravity of most of the	e coarse	aggregate in concrete, lies between	_ ∪∂ 07
	(3)	Stripping value	(4)	Flakiness Index	03
	(1)	Angularity number		Elongation index	03
56	Whi		ot relate	ed to shape of aggregate?	03
	(3)	200-210°C	(+)	30 70 0	03
	(1)	100-120°C	(2) (4)	50-90°C	03
55		· · · · · · · · · · · · · · · · · · ·		hot mix is in range of 150-163°C	03
					03
	(1)	.97 to 1.03	(4)	1.8	03
54	-	eific gravity of bitumen i 2.67	s (2)	1.6	03
5 4	C .	illia annuity of hitumon i	0	•	
	(3)	80/100	(4)	200/220	03
	(1)	30/40	(2)	60/70	.03
53	Grad	le of bitumen used for c	old clim	nate is	03
	(3)	150-300 cm	(4)	50-75 cm	
	(1)	10-20 cm	(2)	50-100 cm	-
52	Duct	ility of bitumen ranges b	etween		
	(3)	cm/Kg	(4)	°C	
	(1)	gm/cc	(2)	centipoises	
51	Unit	of viscosity of bitumen	is		

	61		or testing the compressive and the tensile strength of cement, the cement nortar is made by mixing cement and standard sand in the proportion of				
		(1)	1:2	(2)	1:3		
		(3)	1:4	(4)	1:6		
03	62		ratio of 28 days strength o			standard cylinder is	
03		(1)	0.8	(2)	1.25		
$\mathfrak{03}$		(3)	0.67	(4)	1.00		
03	63	The	liquid limit of a soil mass	is 20'	% and the plas	ticity limit is 25%	
03	03		the plasticity index of the		-	mine is 2070,	
03		(1)	5	(2)	-5		
		(3)	0(Pl always >=0)	(4)	None of these	•	
03							
03	64		n size of a soil indicated the				
03			$D_{60} = 0.006$ mm. The unit			f the soil is	
03		(1)	0.5	(2)	2.0		
03		(3)	6.0	(4)	1.2		
03	65	Cros	ss staff is an instrument us	ed fo	r		
03		(1)	Measuring approximate ho	orizon	tal angles		
03		(2)	Setting out right angles				
03		(3)	Measuring bearing of the	lines			
		(4)	None of the above				
03	-		-				
03	66	In t	he prismatic compass				
03		(1)	-				
03		(2)	The line of sight does no				
03		(3)	The magnetic needle and				
		(4)	The graduated circle is fix always remains in the N-			the magnetic needle	
	67	The	odolite is an instrument use	ed for	r		
		(1)	Tightening the capstan-hea	aded	nuts of level to	ube	
		(2)	Measurement of horizonta	l ang	les only		
		(3)	Measurement of vertical	angles	only		
		(4)	Measurement of both hor	izonta	and vertical	angles	
	03/	CIV-2	202_A]	10		[Contd	

68	A vernier theodolite consists of	
	 Leveling - head assembly Horizontal - circle assembly 	
	(2) Horizontal - circle assembly (3) Alidade assembly	
	(4) All of these	
	(1) / 11 01 01 01 01	
69	The temporary adjustment of a prismatic compass are	
	(1) Centering (2) Adjustment of levels	03
	(3) Adjustment of needles (4) Adjustment of vari	
)3
70 -		13
		03
	(2) Soundness test)3
	(3) Setting time test(4) Normal consistency test	03
		03
71		03
7.1	(2) 10°C	
	(3) 27°C (4) 42°C	03
		03
72	110 mpp. 49	03
		03
	(1) Cyclopean aggregate	03
	(2) Coarse aggregate	03
	(5) The aggregate	03
73	Vicat's apparatus is used to perform	03
	(1) Fineness test (2) Soundness test	03
		03
		03
74	Venturimeter is used to measure	03
	(1) The velocity of a flowing liquid	
	(2) The pressure of a flowing liquid	
	(3) The discharge of liquid flowing in a pipe	
	(4) The pressure difference of liquid flowing between two points in a pipe line	

	75 A pitot tube is used to mea	sure the
	(1) Velocity of flow at the	required point in a pine
	(2) Flessure difference between	een two points in a pine
	(3) Total pressure of liquid(4) Discharge through a pip	Howing in a pipe
03		
03^{-7}	76 The liquid used in manomete	rs should have
03	(1) Low density(3) Low surface tension	(2) High density
03	(*) ~on sarrace tension	(4) High surface tension
_	77 A stretcher bond is usually us	sed for
03	(1) Half brick wall	(2) One brick wall
03	(3) One and half brick wall	(4) Two brick wall
03 78	8 A type of flooring made with	special aggregate of marble chips mixed
03	- Joseph Confe	ut, is caned
03	(1) Granolithic flooring (3) Mosaic flooring	
_	(3) Mosaic flooring	(4) Asphalt flooring
03 79	Frog is defined as a	
03	(1) Depression on the top fac	e of a brick
03	(2) Top most course of plints (3) Brick whose one end is a	·
D 3 03	(4) Brick whose one end is c	ut splayed or mitred for the full width of a wall
03 80	In plane table survey, the instru	iment used to measure horizontal and
03	- Localy, 15 Kill	own as
03	(1) Plane alidade (3) Tacheometer	(2) Telescopic alidade
3	(e) Themcometer	(4) Clinometer
03 ₈₁	The top diameter, bottom diamet	er and the height of slump mould are:
	(-) 10 cm, 20 cm, 30 cm	are:
	(2) 10 cm, 30 cm, 20 cm (3) 20 cm, 10 cm, 30 cm	
	(3) 20 cm, 10 cm, 30 cm (4) 20 cm, 30 cm, 10 cm	
82	In slump test, each layer of concre	te is compacted by a tamping rod with
	(-) 20 010WS	2) 25 blows
	(3) 30 blows (4)	4) 40 blows
03.0	CB1202 AT	
UJ/C	CIV-202_A] 12	WIMIM [Contd

83	The mould size of the cube for testing the compressive strength of cement is				
	(1)	70.6 mm	(2)	150 mm	
	(3)	50 mm	(4)	75 mm	
84		water content in a soil sar out loosing the volume is	-	when it continues to loose weight	
	(1)	shrinkage limit	(2)	plastic limit	
	(3)	liquid limit	(4)	semi-liquid limit	
					03
85	The	free fall of hammer for comp	action	of soil in standard proctor test is	03
	(1)	10.5 cm	(2)	20.5 cm	03
	(3)	30.5 cm	(4)	40.5 cm	O 3
86				rs, one header is used as a brick	03
		onry wall, then the bond s		med will be called as	03
	(1)	English garden wall bond			03
-	(2)	Flemish garden wall bond Stretcher bond	1	-	03
	(3) (4)	Herring Bone bond			O 3
	(+)	Hennig Done bond			
- 87	 ·Whe	en the rise of an arch is more	than t	he span, then the arch is called as?	03
0,	(1)	Lancet arch	(2)	Venetian arch	03
	(3)	Drop arch	(4)	Ogee arch	03
	` '	1	` '	· - · · · · · · · · · · · · · · · · · ·	03
88	The	under surface of stair is	called	as	O 3
	(1)	Soffit	(2)	Cornice	03
	(3)	Wall plate	(4)	Scotia	
					03
89	The	pitched roof which slopes	in al	I the four directions is named as	03
-	(1)	shed roof	(2)	bable roof	03
	(3)	hip roof	(4)	mansard roof	O 3
	•				03
90	The	wall friction of the retaining	ing w	all	U.S
	(1) Decrease active earth pressure but increases passive earth pressure				
	(2)	•		but increases active earth pressure	
	(3)	Decreases both active and	-	- · · · · · · · · · · · · · · · · · · ·	
	(4)	Increases both active and	passi	ve earth pressure	
		•			

		then	its saturated density and submerged density will respectively be.			
		(1)	1.5 g/cm ³ and 1.0 g/cm ³			
		(2)	2.0 g/cm ³ and 1.9 g/cm ³			
ഹാ		(3)	2.25 g/cm ³ and 1.25 g/cm ³			
03		(4)	1.509 g/cm ³ and 1.509 g/cm ³			
03						
03 03	92	If the design speed is V kmph and deviation angle is N radians, then the total length of a valley curve in meters is given by the expression.				
03		(1)	0.38(NV ³) ^{1/2}			
03		(2)	$0.38NV^{3/2}$			
03		(3)	$3.8NV^{1/2}$			
03		(4)	$3.8(NV^3)^{1/2}$			
03						
03	93	A be	ody in natural equilibrium will rotate about the,			
03		(1)	Centre of gravity and Meta centre			
03		(2)	Centre of pressure and Meta centre			
_		(3)	Centre of gravity and centre of buoyancy			
03		(4)	Centre of gravity and centre of buoyancy and Meta centre			
03						
03	94_		flow in a pipe is neither laminar nor turbulent when Reynolds ber is			
03		(1)	Less than 2000			
03		(2)	Between 2000 and 2800			
03		(3)	More then 2800			
03		(4)	None of the above			
00	95		t is the maximum permissible slenderness ratio for steel ties likely se subjected to compression?			
		(1)	400			
		(2)	350			
	_	(3)	250			
		(4)	180			
	03/		[Contd			

The dry density of a soil is 1.5 g/cm³. If the saturation water content is 50%,

91

96	When an end of continuous beam is fixed, in Kani's method, the rotation contribution will be ?			
	(1)	Zero		
	(2)	EI/L		
	(3)	2EI/L		
	(4)	3EI/L		
97 A prismatic beam fixed at both ends carries a uniformly distributed to The ratio of bending moment at supports to the bending moment midspan				
	(1)	0.5	O 3	
	(2)	1.0	03	
	(3)	1.5	03	
	(4)	2.0	03	
98	For an isotropic, homogeneous and elastic material obeying Hooke's law, number of independent elastic constant is			
	(1)	2	03	
	(2)	3	03	
	(3)	9	03	
	(4)		03	
			03	
99	The	slenderness ratio of column is zero when	03	
	(1)	Its length is exactly equal to the radius of gyration	03	
	(2)	Its length is half the radius of gyration		
	(3)	Total load carried is less than half the dead weight	03	
	(4)	If the length is supported on all sides throughout its length	03	
100	Turl	pidity in water is due to	O 3	
	(1)	Algae		
	(2)	Fungi		
	(3)	Organic soils		
	(4)	Finely divided particles of clay, silt and organic matter		