A.E. N. Ex. 2018

42/811 PUTIO-18-12-18

पुस्तिका में पृष्ठों की संख्या—16 No. of pages in Booklet -16 पुस्तिका में प्रश्नों की संख्या—100 No. of Questions in Booklet -100 Subject Code — 05

विषय / SUBJECT : Agricultural

Engineering

समय: 2.00 घण्टे Time: 2.00 Hours NEAP-81

PAPER-II

Question Paper Booklet No. प्रश्न-पत्र पुश्तिका संख्या 5000553

अधिकतम अंक : 200 Maximum Marks: 200

प्रश्न-पत्र पुस्तिका एवं उत्तर पत्रक के पेपर सील / पॉलिथीन वैग को खोलने पर परीक्षार्थी यह सुनिश्चित कर ले कि उसके प्रश्न-पत्र पुस्तिका पर वही प्रश्न-पत्र पुस्तिका संख्या अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई भिन्नता हो तो वीक्षक से दूसरा प्रश्न-पत्र प्राप्त कर ले। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।

The candidate should ensure that Question Paper Booklet No. of the Question Paper Booklet and Answer Sheet must be same after opening the Paper Seal/ polythene bag. In case they are different, a candidate must obtain another Question Paper from the Invigilator. Candidate himself shall be responsible for ensuring this.

परीक्षार्थियों के लिए निर्देश

- 1. सभी प्रश्नों के उत्तर दीजिए।
- 2. सभी प्रश्नों के अंक समान हैं।
- 3. प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।
- 4. एक से अधिक उत्तर, देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा।
- 5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया है। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बबल को उत्तर पत्रक पर नीले बॉल प्वॉइंट पेन से गहरा करना है।
- 6. OMR उत्तर पत्रक इस परीक्षा पुस्तिका के साथ रखा है। जब आपको परीक्षा पुस्तिका खोलने को कहा जाए, तो उत्तर पत्रक निकाल कर ध्यान से केवल नीले बॉल प्वॉइंट पेन से विवरण भरें। OMR उत्तर पत्रक पर प्रश्न-पत्र पुस्तिका संख्या ध्यानपूर्वक भरें।
- 7. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। (गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है। किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।)
- 8. मोबाइल फोन अथवा इलेक्ट्रॉनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित है। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है, तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानीपूर्वक सही भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से काटे जा सकते हैं।
- 10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की त्रुटि हो तो प्रश्न के हिन्दी तथा अंग्रेजी रूपान्तरों में से अंग्रेजी रूपान्तर मान्य होगा।

चेतावनीः अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराते हुए विविध नियमों—प्रावधानों के तहत कार्यवाही की जाएगी। साथ ही विभाग ऐसे अभ्यर्थी को भविष्य में होने वाली विभाग की समस्त परीक्षाओं से विवर्जित कर सकता है।

INSTRUCTIONS FOR CANDIDATES

- Answer all questions.
- 2. All questions carry equal marks.
- 3. Only one answer is to be given for each question.
- If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. The OMR Answer Sheet is kept with this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully with blue ball point pen only. Please fill the Question Paper Booklet no. on the OMR Answer Sheet carefully.
- 7. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable materials with him/her will be strictly dealt as per rules.
- Please correctly fill your Roll Number in O.M.R. Sheet.
 Marks can be deducted for filling wrong or incomplete Roll Number.
- If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorized material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted. Department may also debar him/her permanently from all future examinations.

इस परीक्षा पुस्तिका को तब तक न खोलें जब तक कहा न जाए। Do not open this Test Booklet until you are asked to do so.

AGRICULTURAL ENGINEERING

1.	Levels and theodolites are usually equipped with two horizontal cross hairs which are called -
1.	(1) Horizontal cross hairs (2) Vertical cross hairs
	(3) Stadia hairs (4) Principal cross hairs
2.	The volume of earthwork in land levelling can be computed by -
	(1) Volumetric method (2) Prismoidal method
	(3) End-area method (4) Arithmetic mean method
3.	The ratio of the map distance to the corresponding distance of the ground is called as -
	(1) Scale (2) Unit fraction
	(3) Plan factor (4) Representative factor
4.	Which method of survey is the most accurate?
	(1) Plane table method (2) Grid method
	(3) Transit method (4) Chain survey method
_	The accuracy of measurement in chain surveying does not depend upon -
5.	(1) Length of the offset (2) Scale of the plotting
	(3) Importance of the features (4) General layout of the chain lines
6.	An ideal vertical curve to join two gradients is -
	(1) Circular (2) Parabolic
	(3) Elliptical (4) Hyperbolic
7	If a 30m chain diverges by a perpendicular distance 'd' from its correct alignment, the error in
	measured length is -
	(1) $d \times d/60 \text{ m}$ (2) $d \times d/30 \text{ m}$
	(3) $d \times d/40 \text{ m}$ (4) $d/30 \text{ m}$

0.	The	current sequence of water crosson is -		
	(1)	Splash, Sheet, Rill, Gully	(2)	Sheet, Gully, Rill, Splash
	(3)	Rill, Splash, Sheet, Gully	(4)	Gully, Splash, Sheet, Rill
9.	The t	hermal efficiency of diesel engine varies a	ns -	
	(1)	28-32%	(2)	32-38%
	(3)	38-42%	(4)	42-52%
10.	The 1	ine which separates the catchment basin fr		
	(1)	Ridge line	(2)	Dam line
	(3)	Catchment line	(4)	Watershed line
11.	A co	mbination of contouring and crop rotat	ion, in	which alternate rows are constructed
	perpe	ndicular to the direction of wind and wate	r flow,	to prevent soil erosion, is called -
	(1)	Strip cropping	(2)	Mulching
	(3)	Vegetated waterways	(4)	Terracing
12.	Water	r gas is a mixture of -		
	(1)	CO ₂ and O ₂	(2)	O ₂ and H ₂
	(3)	H ₂ , N ₂ and O ₂	(4)	CO, N ₂ and H ₂
13.	What	will be the height of an overflow spillwa	ay secti	on for a design discharge of 1500m ³ /s,
	given	that the upstream water surface level is a	t elevat	ion of 240 m and the upstream channel
	floor i	is at 200 m; the spillway, having a vertical	face, is	50 m long.
	(1)	3.45 m	(2)	4.55 m
	(3)	5.00 m	(4)	5.76 m
14.	Which	n of the following does not constitute 90%	of dry	weight of any food?
	(1)	Carbohydrates	(2)	Fibres
	(3)	Proteins	(4)	Fats
05 1	(3)		-	

15.	Heatir	ng value of coal is approximately-		
	(1)	1000-2000 kcal/kg	(2)	2000-4000 kcal/kg
	(3)	5000-6500 kcal/kg	(4)	9000-10,500 kcal/kg
16.	In wh	ich decade wind-generated electricity wa	s first sol	ld to the public?
	(1)	1940s	(2)	1960s
	(3)	1980s	(4)	2000s
17.	A me	ter suitable for total flow measurement is		
	(1)	Turbine flow meter	(2)	Venturimeter
	(3)	Rotameter	(4)	Orifice meter
18.	The V	Water Horse Power (WHP) for centrifuga	al water p	bump for given flow rate of 4500 liter/h
	and 1	0 m head added to the flow is -		
	(1)	14.26	(2)	16.26
	(3)	18.26	(4)	12.26
19.	Calcu	ulate the discharge of reciprocating pum	p (single	cutting) if area of cylinder is 0.25 m ² ,
	lengt	h of stroke is 0.15m, number of cylinder	= 1 and s	speed of pump is 50 rpm.
	(1)	0.01125 m ³ /s	(2)	$0.02125 \text{ m}^3/\text{s}$
	(3)	$0.03125 \text{ m}^3/\text{s}$	(4)	$0.04125 \text{ m}^3/\text{s}$
20.		erized coal is -		reserves Cromace
	(1)	Coal free from ash	(2)	Non-smoking coal
	(3)	Coal which burns for long time	(4)	Coal broken into fine particles
21.	Mos	t of the solar radiation received on earth's	s surface	lies within the range of -
	(1)	0.2 to 0.4 microns		400
	(3)	variable (1	(4)	0.5 to 0.8 microns
	(-)			Σ)

24.	A sp	inway has been designed for a head	OI 2.80 II	i with a length 200 m. The discharg
	coeff	icient is $C = 049$. The discharge for this	head will	be -
	(1)	2034 m ³ /s	(2)	2234 m ³ /s
	(3)	2434 m ³ /s	(4)	2634 m ³ /s
23.	In wh	nich collector air flows without any obst	ruction -	
	(1)	Porous absorber plate	(2)	Non-porous absorber plate
	(3)	Over-lapped glass absorber	(4)	Finned absorber
24.	Whic	ch types of biogas plant are fed and emp	tied regula	arly?
	(1)	Batch type	(2)	Continuous type
•	(3)	Dome type	(4)	Drum type
25.	Refle	ecting mirrors used for harnessing solar	energy are	called -
	(1)	Mantle	(2)	Ponds
	(3)	Diffusers	(4)	Heliostats
26.	The N	Mould Board Plough absorbs side forces	mainly th	arough the -
	(1)	Share	(2)	Mould board
	(3)	Land disc	(4)	Frog
27.	The e	energy sources which produce no net en		And the second
	(1)	Secondary energy sources	(2)	Primary energy sources
	(3)	Commercial energy sources	(4)	Non-commercial energy sources
28.	Heav	y smoking in an engine during operation	n may be c	lue to-
	(1)	Rich mixture	(2)	Overloading
		touth and the little and	4.74	त्र कुरू के त्र वर्ष के विद्यार्थ होता है के किस्ता है जिस्सा करते.
	(3)	Late injection	(4)	All of the above
29.	The v	oltage generated in spark plug at the tin	ne of sparl	c is -
	(1)	300-400 V	(2)	100-200 V
	(3)	1000-5000 V	(4)	20,000 V

30.	Disc a	angle of standard disc plough varies between -	
148 A	(1)	15-25° (2) 25	-35°
	(3)	35-42° (4) 42	-45°
31.	When	n an incandescent light bulb is turned on, what percer	nt of the electricity is converted into
	light e	energy?	
	(1)	10% (2) 30	0%
	(3)	50% (4) 70	0%
32.	What	t percent of the average home's electric bill is for ligh	ting?
	(1)	About 10% (2) A	bout 20%
	(3)	About 30% (4) A	bout 40%
33.	Which	ch one of the following pair is not correctly matched?	
	(1)	Solidity – Wind Machine (2) A	naerobic digestion of Organic
		m	atter – Bio gas generation
	(3)	Destructive distillation - Charcoal (4) C	omplete Combustion - Producer
		Production gs	as
34.	Whic	ch one of the following statement is correct?	
	(1)	Surge irrigation is used along with center (2) T	he lateral carries water from pump
		pivot swing arm to provide more uniform to	mainline.
		irrigation.	
	(3)	Organic matter percentage and soil (4) If	f water is applied to soil in excess of
		texture affect infiltration rate of water.	nfiltration rate even runoff will not
		0	ccur.
35.	From	m the hydraulic efficiency point of view, the most efficiency	cient cross-section of an open channel
	is -		
	(1)	Parabolic (2) 7	Trapezoidal
	(3)	Semi-circular (4) I	Rectangular

36.	Wate	rshed is a -		
	(1)	Hydrological entity contributing runoff	(2)	Hydrological entity receiving runoff
		to a common point.		to a single point.
	(3)	Hydrological entity receiving runoff	(4)	Hydrological entity distributing
		from multi-inlet.		runoff from common inlet.
37.	The d	lepth of flow over a sharp crested rectangula	ar wei	r should not be more than about -
	(1)	half the crest width	(2)	two-third of the crest width
	(3)	three-fourth of the crest width	(4)	the width of the weir
38.	The to	erm Tons of refrigeration is used in cold sto	rage ı	unit to measure -
	(1)	mass of fruits held	(2)	mass of refrigerant
	(3)	mass of compressor	(4)	capacity of compressor
39.	Whic	h of the following instrument is used for me	asure	ment of specific heat?
	(1)	Micrometer	(2)	Calorimeter
	(3)	Thermometer	(4)	Current meter
40.	The ra	atio of force of inertia and friction force in a	flow	may be characterized by -
1	(1)	Nusselt number	(2)	Reynolds number
	(3)	Rayleigh number	(4)	Peclet number
1 1.	The n	nass of water vapour per unit mass of dry air	r is -	
	(1)	Specific humidity	(2)	Percentage humidity
	(3)	Relative humidity	(4)	Equilibrium relative humidity
12.	If the	number of microbes in a process has to be	reduc	eed from an initial load of 106 to a final
	10 ⁴ , tl	he required thermal death time (D Value) w	ill be	
	(1)	10D	(2)	4D
	(3)	5D	(4)	20D

43.	Water	horse power of centrifugal pump of 15 li	ters/se	ec capacity and 30m total head will be
	equal	to -		
	(1)	3.0	(2)	4.0
	(3)	5.0	(4)	6.0
44.	Interc	eptor drain helps to control water logging b	y -	, i
	(1)	Lowering the water table	(2)	Preventing subsoil water from reaching the area
	(3)	Allowing vertical drainage	(4)	Draining out excess water to the
45.	The a	ctual area irrigated in a year from an outlet	is -	natural drain
	(1)	Irrigation period	(2)	Intensity of irrigation
	(3)	Irrigation frequency	(4)	Irrigation efficiency
46.	The r	minimum side slope of an earth channel for	polyet	hylene lining is -
	(1)	1.5:1	(2)	2:1
	(3)	2.5:1	(4)	3:1
47.	Whic	th type of cultivating tool is extensively use	d for v	weed control?
	(1)	Furrower type	(2)	Sweep type
	(3)	Slip nose type	(4)	Double point shovel type
48.	A wh	neel of an implement to maintain a uniform	depth	of working in soil is known as -
	(1)	Rear furrow wheel	(2)	Land wheel
	(3)	Front furrow wheel	(4)	Gauge wheel
49.	For t	he farm area of 40 ha followed under single	cropp	
	(1)	10 to 20 HP	(2)	50 HP
	(3)	20 to 25 HP	(4)	35 HP
				53

50.	0. The ratio of total force output of the traction device in the direction of travel to the dynamics			
	weigh	nt on the traction device is called-		
	(1)	Rolling resistance	(2)	Coefficient of traction
	(3)	Tractive efficiency	(4)	Coefficient of friction
51.	When	the speed of a centrifugal pump is changed	the h	nead varies as -
	(1)	The speed	(2)	Square of the speed
	(3)	Square root of the speed	(4)	Cube of the speed
52.	The C	Cetane rating of commercial diesel fuel is be	tweer	1-
	(1)	1 to 30	(2)	60 to 90
	(3)	30 to 60	(4)	90 to 120
53.	Ditch	conduit formula is used for -		
	(1)	Sand bearing test	(2)	Size of tile drain
	(3)	Grade of tile drain	(4)	Loads on drain pipes
54.	Cavit	ation is formation of cavity in flow due to -		
	(1)	Negative pressure as a result of high	(2)	Positive pressure as a result of high
		velocity		velocity
	(3)	Reduction in pressure as a result of high	(4)	None of the above
		velocity of water		
55.	What	is the side draft of a tillage implement?		
	(1)	Horizontal component of pull, parallel to	(2)	Vertical component of pull
		the line of motion		
	(3)	Horizontal component of pull,	(4)	Pull divided by the furrow cross
		perpendicular to the line of motion		section area
56.	An aq	uifer which is bounded by an impermeable	layer	at the bottom and semi-pervious layer at
	the to	p is known as-		
	(1)	Artesian aquifer	(2)	Confined aquifer
	(3)	Semi-confined aquifer	(4)	Unconfined aquifer

57.	Cutter	bar is a component of -		100 W
	(1)	Seed drill	(2)	Flail mower
	(3)	Vertical conveyor reaper	(4)	Hand hoe
58.	A furro	ow cross-section in a country ploug	th is commonl	y -
	(1)	Circular	(2)	Parabolic
	(3)	Rectangular	(4)	Trapezoidal
59.	Spiked	l tooth type threshing cylinder are	generally used	
	(1)	Rice threshers	(2)	Wheat threshers
	(3)	Maize threshers	(4)	Mustard threshers
60.	The cr	ank shaft and rear axle of tractor a	re attached at	an angle of -
	(1)	30°	(2)	60°
	(3)	90°	(4)	120°
61.	The d	rainage density is -		
	(1)	Length of streams per draina	ge area (2)	Stream discharge per unit drainage
		within basin		area
	(3)	Drainage area per unit stream ler	igth (4)	Number of streams per unit drainage
				area
62.	Value	e of Drainage coefficient for small	drainage proje	ects is taken as -
	(1)	10 to 15 mm/day	(2)	
	(3)	6 to 25 mm/day	(4)	
63.	The	ratio of the partial pressure of moi	sture of the fo	ood to vapour pressure of the water at the
	same	temperature is called-		
	(1)	Moisture content	(2)	
	(3)	Dry bulb temperature	(4)	
64.	Metl	hane (CH ₄) content in producer gas	obtained from	n biomass gasification is -
	(1)	60%	(2)	
	(3)	6-10%	(4)) 11-20%
65.	Higl	n solidity wind rotor works on -		
	(1)	Drag force	(2) Lift force
			(4	Gravity force
	(3)	Both Lift and Drag force	(4	ij Glavity 10100

66.	Calo	rific value of biogas (60% CH ₄) is -		
	(1)	5713 kcal/kg	(2)	4713 kcal/m ³
	(3)	4200 kcal/m ³	(4)	3713 kcal/m ³
67.	Whic	h one among these will be the most suitable	e drye	r for drying liquid foods?
	(1)	Dielectic dryer	(2)	Spin flash dryer
	(3)	Tunnel dryer	(4)	Trough dryer
68.	The c	rawler tractor havetype of bra	ake.	
	(1)	Hydraulic	(2)	Internal expanding shoe
	(3)	Disc	(4)	External contracting shoe
69.	The p	problem of "back logging" occurs in -		
	(1)	Belt conveyor	(2)	Screw conveyor
	(3)	Bucket elevator	(4)	Pneumatic conveyor
70.	The to	erm "mesh" refers to the number of opening	gs per	linear -
	. (1)	Decimeter	(2)	Millimeter
	(3)	Centimeter	(4)	Inch
71.	The ty	ype of the induction motors having variable	speed	d characteristics is -
	(1)	Split phase	(2)	Capacitor
•	(3)	Universal	(4)	Three phase
72.	Water	mist polishing machine is used for the mil	ling o	f -
	(1)	Wheat	(2)	Maize
	(3)	Rice	(4)	Barley

			5.3	
73.	The sp	pecifications of the wire for transmission of	of ele	ctrical energy should be selected such
	that -			
	(1)	Low current flow and the resistance of	(2)	Low current flow and the resistance
		the cable is small		of the cable is high
	(3)	High current flow and the resistance of	(4)	High current flow and the resistance
		the cable is small		of the cable is high
74.	Which	n one is the most suitable method of drying	for fr	uit juice?
	(1)	Solar drying	(2)	Fluidized bed drying
	(3)	Tray drying	(4)	Spray drying
75.	Table	separators work on the basis of -		
	(1)	Size	(2)	Shape
	(3)	Specific gravity	(4)	Terminal velocity
76.	Whic	h of the erosion is extremely harmful for the	land	?
	(1)	Raindrop erosion	(2)	Sheet erosion
	(3)	Rill erosion	(4)	Gully erosion
77.	The g	glazing which limits the radiation and conve	ction	heat losses is -
	(1)	Absorber plate	(2)	Selective surface
	(3)	Insulation	(4)	Transparent cover
78.	In a l	nydro-electric plant, spillways are used -		
	(1)	To discharge all surplus water .	(2)	To discharge surplus water on the
				downstream side of dam
	(3)	When water is not available in sufficient	(4)	None of the above
		quantity		(2)
		100 N N N N N N N N N N N N N N N N N N		- C 200

79.	Whic	ch one of the following pairs is not correctly	mate	hed?
	(1)	Well log – The practice of making a detailed record of the geologic formations penetrated by a borehole.	(2)	Propeller – A type of fan that transmits power by converting rotational motion into thrust.
	(3)	Turbine pump – Pump used for electricity generation	(4)	Sprinkler irrigation – Modern irrigation technique
80.	The c	commonly used square sizes for contouring	is -	
	(1)	$10m \times 10m$ to $5m \times 5m$	(2)	$10m \times 10m$ to $15m \times 15m$
	(3)	$5m \times 5m$ to $20m \times 20m$	(4)	$5m \times 5m$ to $10m \times 15m$
81.	The le	ength of a line measured with 20m chain was	s foun	d to be 500m. It was subsequently found
		he chain was longer by 0.04m. What is the c		
	(1)	500 m	(2)	501 m
	(3)	502 m	(4)	503 m
82.	The e	quation for curve number is given as -		
	(1)	$CN = \frac{2540}{25.4 + S}$	(2)	$CN = \frac{25.4 + S}{2540}$
	(3)	$CN = \frac{2500}{25.0 + S}$	(4)	$CN = \frac{2540 + S}{25.4}$
83.	The m	nain function of crank shaft in an engine is -		
	(1)	To convert reciprocating motion into	(2)	To operate engine valves
		rotary motion		
	(3)	To operate fuel injection pump	(4)	To increase engine efficiency
84.	Value	of Betz's coefficient is -		
	(1)	0.562	(2)	0.593
	(3)	0.621	(4)	0.657

85.	The tir	ne of retardation in case of creep test is -				
	(1)	36.7% of the time for total strain	(2)	63.2% of the time for total strain		
	(3)	76.3% of the time for total strain	(4)	83.2% of the time for total strain		
86.	Therm	ostat valve is a component of -				
	(1)	Engine fuel system	(2)	Exhaust system		
	(3)	Cooling system	(4)	Hydraulic system		
87.	The ra	tum to the molecular diffusivity of heat				
	is -			700 F 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	(1)	Nusselt number	(2)	Prandtl number		
8	(3)	Rayleigh number	(4)	Peclet number		
88.	The time of concentration of a watershed is proportional to -					
	(1)	L ^{1.77}	(2)	S ^{-0.385}		
	(3)	$L^{1.77} S^{0.385}$	(4)	S ^{1.77}		
89.	Hydrographic Survey deals with the mapping of -					
	(1)	Large water bodies	(2)	Watershed		
	(3)	Canal system	(4)	Movements of clouds		
90.	The grazing animals can change the type of Vegetation by-					
	(1)	Cross pollination	(2)	Selective grazing		
	(3)	Bringing in plant pathogens	(4)	Bringing the seeds of other plants		
91.	Contour bunding is done to check-					
	(1)	Sheet erosion	(2)	Rill erosion		
	(3)	Gully erosion	(4)	Ravine formation		
92.	. Interception loss is-					
	(1)	High in the beginning of storm and	(2)	Low in the beginning of storm and		
	(-)	gradually decreases		gradually decreases		
	. (3)		(4)	High in the beginning of storm and		
		decreases		gradually increases		
93.	The heat transfer rate in solid agricultural products of any shape is called-					
,,,		emat we we in the second	(2)			
	(1)	Mass density	(2)			
	(3)	Bulk density	(4)	Mass diffusivity		

94.	Octai	ne number for regular petrol fuel varies as -		
	(1)	95-98	(2)	85-90
	(3)	70-80	(4)	60-65
95.	Critic	cal pressure of water is -		
	(1)	1 kg/cm ²	(2)	100 kg/cm ²
	(3)	155 kg/cm ²	(4)	213.8 kg/cm ²
96.	Whic	h of the following countries is <u>not</u> in the list	of top	3 consumers of energy in the world?
	(1)	China	(2)	India
	(3)	Russia	(4)	United States
97.	Whic	h one is a false statement?		
****	(1)	Magnets are used to generate electricity.	(2)	Using hydropower does not impact
				the environment.
	(3)	Propane comes from oil and natural gas	(4)	Electricity is a renewable resource.
		wells.		ing it stops a familiar gut
98.	A 1cm	n ² silicon solar cell has a saturation current	of 10	-12 A and is illuminated with sunlight
	yieldi	ng a short - circuit photocurrent of 25 mA.	Calcul	ate the solar cell efficiency.
	(1)	13%	(2)	14%
				Committee to the stipped and an entering of the state of
	(3)	15%	(4)	16%
99.	The m	naximum size of the raindrop is -		
	(1)	6 mm	(2)	10 mm
47.4	(3)	2 mm	(4)	
	(3)	2 mm	(4)	0.5 mm
100.	In the	Universal Soil Loss Equation (USLE), the s	oil er	odability factor K is
	(1)	Measure of the susceptibility of soil	(2)	Slope length gradient factor
	(2)	particles to detachment and transport		
	(3)	Crop management factor	(4)	Rainfall-runoff factor
		XX		

Space for Rough Work

received.