FOR EVALUATOR'S USE ONLY Sub. Code : **21** Optional Paper Mechanical Engineering: Paper – II Time: 3 Hours / Maximum Marks: 200 / Total Pages: 32 | | | | | 60 / 0 m /
2004 - 1
2004 - 1909 | | | Ev. | aluat | ion | Table | N Property of the Control Con | (For Evaluator's Use Only) | |-------------------------|------|----------|----------|---------------------------------------|----------|----------------|----------|--|-------|----------|--|--| | 48.000 | (P/ | \RT-A | | | PA | RT-B | | ************************************** | PAF | ₹T-C | | Grand Total | | QN | E-1 | E-2 | AC | QN | E-1 | E-2 | AC | •QN | E-1 | E-2 | AC | (For Evaluator's Use Only) Grand Total PARTA | | 1 | | | | 21 | | | | 33 | | | | PART-B | | 2 | | | | 22 | | | | 34 | | | | PART-C | | 3 | | | | 23 | | | | 35 | | | | Total | | 4 | | | | 24 | | | | 36 | | | | (–) Marks | | 5 | | <u>-</u> | | 25 | | | | 37 | | | | Final Total | | 6 | | | | 26 | | | | 38 | | | | Marks in Words | | 7 | | | | 27 | | | | 39 | | | | सम्बद्धाः स्टब्स्य विकास स्टब्स्य स्टब्स्य स्टब्स्य स्टब्स्य स्टब्स्य स्टब्स्य स्टब्स्य स्टब्स्य स्टब्स्य स्टब्
स्टब्स्य स्टब्स्य स | | 8 | | | | 28 | | | | | · - i | | | | | 9 | | | | 29 | | | | | | | | | | 10 | | | | 30 | | | | | | | | Remarks of Evaluator/Chief Evaluator | | 11 | | | | 31 | | | | | | | i | Charles and Commission and American Services (1997) and the services of se | | 12 | | | | 32 | | | · | | | | | | | 13 | | | | , | | | | \dashv | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | + | - | \dashv | \dashv | | | | | | 17 | _ | • | | | \dashv | _ | | | _ | \dashv | | · | | 18 | | | | | | | 1 | | | \dashv | • | Remarks of Scrutiniser | | 19 | | | | \dashv | | \dashv | + | | - | | | Remarks of Scrutiniser | | 20 | | | - | _ | \dashv | | | \dashv | | - | | | | Total | | _ | \dashv | | | | \dashv | | - | | \dashv | | | Evalu
ator's
Sign | | - | | | | | | | | | | | 21 - III] 2 Contd... | Note: | Attempt all the twenty questions. Each question carries 2 marks. Answer not exceed 15 words. | should | |-----------------|--|-------------| | 1 Writ
of li | te the relation between, number of joints (J), number of higher pairs (H) and r links (L) in a chain to make it a mechanism. | | | | | | | | | - | | | | | | 2 Wha | at type of contacts exists between elements of lower pairs and higher pairs are example of each. | ? Give | | | | | | | | | | | | | | 3 Defin | ne crowning of pulleys in flat belt drives with its use. | | | | | | | | - | | | 21 – II J | 3 [Co | ntd | | 4 | What are 'Mitre' gears? | | | | | | |-------------|----------------------------|---------------|-------------|-------------------|----------------|------| , | | | | | | | | • | | | | | | | | | | | | | | | | • | · . | - | | | | | | | | | | | | | | 5 | List any three advantages | of Value I | Engineering | <u>5</u> . | | | | | | | | | | | | | | | | | | | | | | | | | · | ٠ | | | | | | · | _ | | | | | 6 | State Guest's theory of fa | ailure. For v | what type | of materials this | is applicable? | | | 21_ | - H] | | 4 | | [Сот | ntd. | | 4 X | AK 3 | | • | | 100 | | 2: | 1 – II] | | 5 | | [Contd | |-------------------------|----------------------|---------------------------------------|---------------------------------------|---------------------------------------| | | · , | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | · | | | | | | - | | | · . | | | | | | | · | | | · · · · · · · · · · · · · · · · · · · | | List possible modes of | a randre of cotter | in a cotter joint. | sketch any on | e mode of failure | | 9 List possible modes o | of failure of catter | in a natter into | Class = 1 | 1 00" | | | | <u> </u> | | · | ··· | | | 19 | | - <u>-</u> | | <u>.</u> | | | | | · · · · · · · · · · · · · · · · · · · | · | | 8 What is meant by | break-even point? | , | | | | A 33H | | | | | | | · | | | <u></u> | | | - | | <u>-</u> | | | <u> </u> | | · | . | · · · · · · · · · · · · · · · · · · · | | | ······ | | | | | | | | | | | | | · | | · · · · · · · · · · · · · · · · · · · | | | | | | | | 7 Define a forming p | process. | | | | | 21 - 11 } | 6 | | [Contd. | |----------------------------------|------------------------|---------|----------| | | | | | | | | | <u></u> | | | | | | | • | | | | | 12 What is the function of a ga | uge ? | <u></u> | | | | | | | | 'Interferometry' can be used for | r inspection of what ? | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | Define kinematic link. | | - | | | 13 List any four | wages incentive plans | s. | | | | |-------------------|-----------------------|-----------------|-----------------|------------------|-------------| | | | | | | | | | | | | | | | | | | <u> </u> | ·· | | | | | | | | | | | | | | | | | · | <u>.</u> | ···· | | - | | | | | <u></u> | | | · | 14 State the name | s of various types of | plant layout gi | ving example of | of application i | ndustry | | | | | | | | | | | | • | <u></u> | | | | | | · | | | | | | | | | | | | | | : | ··· | | | · | | | | | | | | · | | | | | | | | | | , | | | | | | | | | | | | | | | | | 15 What is meant | by incentive scheme | ? | | | | | | | | | | | | · | | | | | | | <u> </u> | | | | • | | | | | | | | - | | | - | | ···· | · · · · · | | | | | <u> </u> | <u> </u> | | | | | | | | | | | | | | | | <u>.</u> | | | | | · | | .,,, | | 1 - II } | | 7 | | iC | ontd | | • | 18 What is two person zero-sum Game ? | |----|---| | - | | | | | | | · | | 17 | the according lot size of an item with an annual demand of 900 pieces costing | | | | | | | | | | | 16 | North-West corner method is used to solve which type of problems. | | 9 | Name | | | | | | | | | | | | | | |---|------|---------------------|------|-------|-------------|------|------|------|------------|--------|-------------|------|--------|--------------| - | | | | <u> </u> | | | ٠ | | | | | | | | | | | | | _ | | | | | | · | | _ | _ | | <u> </u> | • | | - | | _ | | - |
 | | | | | | | · . | <u> </u> | | | -·· <u> </u> | | | | |
 | | | | | | <u>_</u> . | will be | | ge in | wire | size | of o | comp | ression | spring | with | iner | ease i | 'n | | | | will be
ble stre | | ge in | wire | size | of (| сотр | ression | | with | incr | ease i | 'n | | | | | | ge in | wire | size | of o | comp | ression | | with | incr | ease i | 'n | | | | | | ge in | | | | | ression | | with | incr | ease i | 'n | | | | | | ge in | | size | | | ression | | with | incr | ease i | 'n | | | | | | ge in | | | | | ression | | with | incr | ease i | n | | | | | | ge in | | | | | ression | | with | incr | ease i | 'n | | PART | _ | В | |------|---|---| | LAN | _ | | Attempt all the twelve questions. Each question carries 5 marks. Answer should not exceed 50 words. Note: Explain D'Alembert's Principle. Explain any two inversions of Slider-Crank kinematics chain mechanism and application. 21 - 11 10 Marks: 60 |] | | | | · · · · · · · · · · · · · · · · · · · | |-------------------|---------------------|--------------------------------------|---|---| | | | | | · · · · · · · · · · · · · · · · · · · | | | <u> </u> | | | | | | | | | | | · | | | <u>.</u> | · · · · · · · · · · · · · · · · · · · | | | · | - | | | | | | | | | | | · | | | | | • | . | | | | | | | | | | | · | ··· | | | | | | · . | | -, | | | | - | | | | | · | · | | - | | Ç : | | | | List the steps in | Scientific Recmit | ment (Selection | a) procedure | | | | | | | | | | | | | | | | | ··· | . | | | | | | | | | | - | | | <u> </u> | | | " . | <u> </u> | | | | | | | | | | | · | . | | | | | | ·· | | | | | | - | | · - | | | | | | · . | | | | | | <u> </u> | | | | - | | | | | | | | | | | | | · · · · · · · · · | ** | | | | | | | | | | _ | | | | <u> </u> | | | | | | | List the steps in S | List the steps in Scientific Recruit | List the steps in Scientific Recruitment (Selection | List the steps in Scientific Recruitment (Selection) procedure. | | · | | | |-------|--|---------| | ·
 | | | | · | | | | | | | | | <u>. </u> | | | | | <u></u> | | | | | | | | | | | OM with the help of a neat ske | Explain difference | e and relationship be | | | | | |---------------------------------------|--|---------------------------------------|---------------------------------------|-------------|-------------| | | | | | | <u> </u> | | | • | | | | | | | | | | | | | · | ······································ | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | · | | · · · · · · · · · · · · · · · · · · · | | ·
 | | · | | | | | · · · · · · · · · · · · · · · · · · · | | <u> </u> | | | | | | | | | | | | <u> </u> | | | <u> </u> | | What do you und | | ve inventor. | | | | | | lerstand by selective | | ontrol? Ex | | | | | lerstand by selectiv | ve inventory c | ontrol ? Ex | | | | | lerstand by selectiv | ve inventory c | ontrol ? Ex | | | | | lerstand by selectiv | ve inventory c | ontrol ? Ex | | | | | lerstand by selectiv | ve inventory c | ontrol ? Ex | | | | | lerstand by selectiv | ve inventory c | ontrol ? Ex | | | | | lerstand by selectiv | ve inventory c | ontrol ? Ex | | | | | lerstand by selectiv | ve inventory c | ontrol ? Ex | | | | | lerstand by selectiv | ve inventory c | ontrol ? Ex | | | | | lerstand by selectiv | ve inventory c | ontrol ? Ex | | | | , 1100 10 0.D. | | | | | |------------------|-------------------|------------------|------------------|-------| | What is signific | ance of "Economic | ic lot size" ? I | How is it obtain | ned ? | | | | | | | | | | | | ···· | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | <u>·</u> | | | | | | | | | | | | · | | | | | | • | | | | | | • | | - | | | |---------------|---------------|---|---------------------------------------|-------------| | · | | | | | | • | | | | | | | | | | | | : | | | | 4 | | | | | | | | - | | | | · | | | | | · | | | . | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | | | <u></u> | | | | | | | | | | What is a | | | e are these kind of | | | | _ | · . | | | | | · | | • | | | | | | | | | | | | | | | | | * | | | | | | <u>, , , , , , , , , , , , , , , , , , , </u> | | | | , | | | <u> </u> | | | | | | | | | | <u> </u> | | | | | | | | | | | Note: | 200 words. | | |--------|---|-----------------------------| | i
(| M/s. Anupam Surgicals which markets hypodermic needles to hospitals likes inventory cost by determining the optimal number of hypodermic needles ob order. The annual demand is 50,000 units, the set up or ordering cost is Rs order and the holding cost per unit per year is Rs. 200. Using these data (figures) | : 200 ber | | (| (b) Total annual inventory cost. | _ | | | | | | | | | | | | | | <u> </u> | | | | _ | | | | | | | : | <u> </u> | | | | | | | | | | _ | | · | | _ | | | | | | | | - | • | | | _ | 16 | Contd
Heller namentation | | | | |---------------------------------------|--| <u>. </u> | | | | | | | | | | | | | | | _ | | | | | | | | | <u>-</u> | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | <u> </u> | _ | | | | | | | | | _ | | | | | | _ | | | | | • | _ | | 6. 7. 111. | | | | | | · · · · · · · · · · · · · · · · · · · | _ | | | | | | | | | | | | - | | | _ | | | | | teeth to avoid interference. | | | |------------------------------|---------------------------------------|----------| | | | | | | | | | | | | | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | | | · | | | | | | | | | | | <u> </u> | • | ·. | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | <u> </u> | | [Conto | | i – II] | | | | 19 | | | | | I Cont | | |--------------|----------|---------------------------------------|---------------|---------------|--------------------|-------------|---------------|-------------|--|--------------| | | | | | | · | | | | | | | | | | | | | | | <u></u> | | | | | | | | | · | | | | | - | | · · · · · · | | | | · · | - . — — | /\ | | | | | | ··· | ······ | | . | ; | | <u>.</u> | -4- | | | | | - | | · | | | · . | · | . | | <u>.</u> | | | | | | <u>_</u> | - | . | | <u> </u> | <u> </u> | | | | | <u></u> | | | · | | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | ·
—· | | · . | <u>. </u> | <u> </u> | | | | ······ | | | | | | | <u> </u> | | | | | | | | | | · | | | | | | | ···· | | <u> </u> | | | · · · · · · | | : | <u>-</u> | | | · | | <u>.</u> | | | · | | | · | | | | | | | | | | | | · · · · · | | | - | | · · · · · · · · · · · · · · · · · · · | - | · | | | | <u> </u> | | | | | <u> </u> | | | | | | · | | • | | | | | | | | | | · | | | | | | <u> </u> | | | | | | | | | _ | | | | | | | | | | | | | 2 MMMMMMMMMM [Contd... In epicyclic gear train shown below in fig., the annulus A rotates at 300 rpm about the 35 axis of the fixed wheel S which has 80 teeth. The armed spider shown as 'a' in figure is driven at 180 rpm. Determine the number of teeth on the wheel 'P'. | | 20 | [Contd | |----------|----|--------| | | | | | 1 | | | | | | | | | | | | | | | | <u> </u> | | | | • | <u> </u> | | | | |----------------|--------------|---------------------------------------|---------------------------------------|---------------|-------------| | | | | | | | | | ·········· | * | | | | | <u></u> | | | <u> </u> | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | , | | | | | | | | •• | | | | <u>-</u> | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | · | | | | _ | <u></u> | • | | | | | | | | | | | | | - . | | | | | | | | | | | | | | | | , | | | · · · · | | | | | | | | | · | | | | <u> </u> | | | | | | | | | | 21 – II J | | 21 | | [Contd | |---------------------------------------|----------|--|-------------|----------| | | -m | | | - | | | | | | <u> </u> | | · · · · , <u> </u> | | | _ | | | <u> </u> | | | | | | | <u></u> | | | | | · · · · · · · · · · · · · · · · · · · | <u> </u> | | <u></u> | | · · · · · · · · · · · · · · · · · · · | | | | | | | | · | | | | | | | | | | | | | | | | | | <u></u> | | | | <u>. </u> | | | | | | | · | | | | | | | · | | - | | | | | | | | | |-----------------|---------------------------------------|--------------|-------------|--------------|-------------|---------------------------------------|-------------|--------------| | | | | | · | | · | | | | | · | | | _ | | | | | | | | <u> </u> | | | | | | | | | | | | | | - | 4 | | | | | | · | | | | ···· | | | | | | | <u> </u> | | | _ | | | | | | | | | | | | | | · | | | | | | | | | | | - | | | - | | | | | | | | | | | | | | | | | | <u> </u> | | | · · · · · · · · · · · · · · · · · · · | | · · · · | | | ···· | | | | | | | | | | | | | | | | | | | | | | · | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | | · | | | | | | | | · | | : <u></u> | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | - · | · | | | | | | | | | | | | | | | | | | | | **** | | | | <u> </u> | | | | | | | =1.4.4 | | | | | | | <u> </u> | | | | | | ٠ | | | | | | | | | | | - | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | • | | | | | | | · | | | | | | | _ | | | | | | | | | · - | · | | | | | | | | | | | | | | | | | | | | _ | • | | | | <u> </u> | | | | |)1 _ II 1 | | | | | | | | | | 37 | Discuss | the principles o | f scientific | management | given by | y F. W. | Taylor. | | | |----|----------|------------------|--------------|------------|---------------|----------|---------|----------|----------------| | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | - | _ | | | <u> </u> | | | | | • | | | | | | | · | | | | | | | _ | <u> </u> | | <u> </u> | | | _ | | | | | | _ | | | | | | | | | | | | _ | | | | | | | | | | | | | _ | <u> </u> | | | | | | | | | | | | · | | _ | | | | | | | | | | | | | | | | | | | | | | _ | | | | | | · | | | | | _ | | | | | | | | | | | _ | <u> </u> | - | | | | | | | | | | | _ | | | | | | | | - | | | | | | | | | | | | | | - | | | | | | | | ·
 | | | | | | | | | | _ | | | | | | ·
 | | | | | | | - - | | | | - | | | | | | | | | | | | | | | | | . ~ | | | | | | | - | | | | • | |----------|---|---|-------|--|--|---------------------------------------|-------------|-----------------| | | | | | | ······································ | | | | | <u> </u> | | ·- | | | | | | | | | | | - " | | | | | | | | • | <u> </u> | ··-·· | | | | | _ | | ***** | , , , , , , , , , , , , , , , , , , | | | <u>. </u> | | | <u> </u> | ·· · | | | | | | | · . | ·- <u>·</u> | <u>.</u> | | | | | | | | ···-· | · · · · · · · · · · · · · · · · · · · | | | | | | | · | | | | | | | | | <u> </u> | | | | | | | | | | . <u>. </u> | | | | - | | | | | | - | | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | , | | | | | | | | | | , | · | | | | | , | | | | | · | | | | | , | | | | | · | | | | | | | | linininininini Conta... | 38 | Discuss | various | types | of to | ol wears | s and | mecha | nism o | f wear | • | | | |----|--------------|--------------|-------|-------|--------------|-------------|-------|-------------|-------------|-------------|----------------|----------------| | | | | | | <u></u> | | | | | ······· | ·· | | | | | | | | | | • | | | - | | | | | <u> </u> | - | • | | | | | | _ | | | | | | | | | | | | | | | • | | | | | | <u> </u> | | | | | | | | | | | | | | | | - . | | | | | | | | | | | | · ···· | | | | | - | | | | | | | | | · | ··· | | | | | | | | | <u> </u> | | | | · · · | | | | | | | | | | | | | | | <u> </u> | | | | | | | - | ···· | | | | | | | <u>-</u> | | | | | | | ·. | | | | <u>-</u> | | | | | | | | | | | | | | | | • - | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | . | <u> </u> | | | | | | · · · | | | | | | | <u>-</u> | | | | | | | | | 21 | TT) | | | | | 2 | | | | | | [Contd | | _ | | • | | | | | |---|---|---|---|---------------------------------------|--------------|---------------------------------------| | | | . | | | | | | | | | | | • | · · · · · · · · · · · · · · · · · · · | · | _ | | | · | • | | | | | | | | | | | | | | | | | • | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | - | | | | | | | | | • | | • | | | | _ | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | . | | | _ | | | | | | · | | | | | | | | | | | | | | | | | | _ | | | | | | | Contd... | | • | cutting speed | | | | | |--|----------|---------------|----------------|-------------------|----------|---------------------------------------| | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | : | | | _ | | | | | | | | | | | | | | | | | - | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | • | · - - | | | | | | | | | | | | <u> </u> | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | - | | | | <u> </u> | <u></u> | **** | | | . | | | · | | | | | <u>-</u> | | <u>. </u> | | | | | <u> </u> | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | , - | | | | | 21 113 | 20 | | [(] | |--------|--|---------------------------------------|-----| | | | | | | | | | - | | | | | | | | | | | | - | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | • . | | | | | | | | | | | | | | · | | | | | | | | | | | | • | | | | | - | | P | | | | | | | · | | | | | | | | | ······································ | | | | | | | | | | | | | 31 21 – JI]