FOR EVALUATOR'S USE ONLY Sub. Code : $0\overline{9}$ Optional Paper Computer Engineering: Paper - I | ime | : 3 <u>+</u> | lours | / Max | ximun | n Mar | ks: | 200 / | Total | Page | es : 3 | 12
50-25-4 | AND THE PROPERTY OF PROPER | |----------------------|--|----------------|----------|-------|----------|--------|------------------|------------|------------|---------|---------------|--| | | | 3.945
3.945 | | | | | Eva | luati | on] | able | | (For Evaluator's Use Only) | | | PΑ | RTA: | 4. | | PAI | ₹T-B | Tibels
Totals | A STATE OF | PAR | RT-C | | Grand Iolai | | QN | E1 | E-2 | AC | QΣ | 1 | γ
Ε | AC | QN | E-1 | E-2 | AC | PART-A | | 1 | | | | 21 | | | | 33 | • | | | PARTE | | 2 | | | | 22 | | | | 34 | | | | | | 3 | | | | 23 | | | | 35 | | | | Total | | 4 | | | | 24 | <u> </u> | | | 36 | | | _ | (–) Marks | | 5 | | | _ | 25 | | | | 37 | | | | Final Total | | 6 | | | | 26 | | | | 38 | | | | Marks in Words | | 7 | | | | 27 | | | | 39 | | | | | | 8 | | | | 28 | | | | | | | | | | 9 | | | | 29 | | | | | | | | armids - 42-Approx 11 11 Apr | | 10 | | | | 30 | | | | | | | | Remarks of Evaluator/Chief Evaluator. | | 11 | | | | 31 | | | | | | | ļ | | | 12 | | | | 32 | | | | | |] | | <u> </u> | | 13 | | | | | | | | | | | | | | 14 | | | | | | | <u> </u> | | | | | | | 15 | | | | | | | | | <u> </u> | <u></u> | | | | 16 | 1 | | <u> </u> | | | | | | | | | | | 17 | | | | | | | | | | | _ | | | 18 | | | | | | | | | | | | Remarks of Scrutiniser | | 19 | † | | | 1- | | | | | | | | | | 20 | <u> </u> | | | | | | | | | | | | | Tota | | | | | | | | | | | | | | Eval
ator
Sign | 's | | | | | | | | | | | - | 09-1] -Ուսանունությունն Մարդանությունն Note: Attempt all the twenty questions. Each question carries 2 marks. Answer should not exceed 15 words. 1 Compute value of X in $2765_8 + F6A_{16} = X_8$. When does an object become eligible for garbage collection ? 3 Obtain complexity of binary search in sorted data using recurrence relation. . 09 - 11 | V | When | | | | | | | | | | | | | | |---|------|------------|--------|------------|----------|-------|-------|---------|--------|-----|------|-----------|-------------|----------------------| | _ | | | | | | | | | | | | | |
 | | _ | | | | | | | | | | | | | | | | | | <u>-</u> - | _ = | | | | | <u></u> | | | | | |
 | | | | - | -
 | | | | ·
 | | | | | | |
 | | | | | | | | | | | | | · | | |
 | | _ | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | _ | | | | <u> </u> |
 | | _ | | | | | | | | | | | | | |
 | | | Wri | | | —-
1 ех | pression | on to | compu | | parity | bìt | of a |
4-bit | | ₁₀ . | | _ | | ite | boolea | | pressio | on to | compu | nte odd | parity | bit | of a | 4-bit | |
a ₀ . | | _ | | ite | boolea | | pressio | on to | compu | nte odd | parity | bit | of a | 4-bit | |
a ₀ . | | _ | | ite | boolea | | pression | on to | compu | nte odd | parity | bit | of a | 4-bit | |
a ₀ . | | _ | | ite | boolea | ı ex | pression | on to | compu | nte odd | parity | bit | of a | 4-bit | |
a ₀ . | | _ | | ite | boolea | ı ex | pression | on to | compu | nte odd | parity | bit | of a | 4-bit | |
a ₀ . | | | | ite | boolea | ı ex | pression | on to | compu | nte odd | parity | bit | of a | 4-bit | |
a ₀ . | | | | ite | boolea | ı ex | pression | on to | compu | nte odd | parity | bit | of a | 4-bit | |
a ₀ . | i Conta... ``` Find the output of the following Java Program: public class java prog { public static void main (string [] args) int a []; try a = new a [10]; return; a[10] = 10; system.out.println ("10th No =" a [10]); catch (Exception e) system.out.println ("Exception has occurred"); finally system.outp.println ("Finally arrived"); } 09 - 1] 5 [Contd... ``` | |
] | | · · · · · · · · · · · · · · · · · · · | | | 6 | | |
 | | |----|----------|--|---------------------------------------|----------|--------------|-------------|--------------|---------------|---------------------------------------|-------------| | | | | | | | | | |
 | | | | | <u> </u> | ·
 | | , <u> </u> | | - | <u>.</u> |
 | | | | | | | | · · | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | ···· , , | · | | | . |
 | | | | If minin | | partit | ion is s | selected | | | | rive num | | | | | <u> </u> | <u> </u> | | _ | | | | | · |
 | | | | | <u>. </u> | | | | | | | ——— | | | 3 | - | minterm | | | | | | | expressio | | | —— | | | | | | | | | | | | | ··· | | - | | | | | | | | | | | <u>.</u> | | | | | | |
 | | | | | · · · · · · · · · · · · · · · · · · · | -
 | | | | | | | | --- <u>-∞é</u> - xx = 1 - 1 - 1 - 1 - 1 - 1 - 1 : MARRA 1: | 10 | Differentiate horizontal mi | croinstructio | n with ver | rtical microir | istruction. | | |------|--|----------------|-------------|----------------|-------------|------------------| _ | | | | | | | | - | | | | | | | | - | - | | | | | | | | | | | | | 11 | What is Von-Neuman mod | del ? | | | | | | | | | - | <u></u> | | | | | | | | | | | | | | | | | | ,, | | | | | | | | i pr | | | | | _ | | | | | | | | | | | | | | | | | | | <u></u> | | 12 | Consider the statement: "C logic." Prove or disprove | | | c is equivale | nt to AND | gate in positive | | | · · · · · · · · · · · · · · · · · · · | · <u>·</u> ··· | | | | · · | | | 7774 | | <u> </u> | | | <u>.</u> | | | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | <u></u> - | | _ | ,.,. | | | | - - | | | | | | 09 – | - I] | | 7 | , | | [Contd | ``` What is the output of the following C program ? 13 # include <stdio.h> main() { int a, b = 0; static int c[10] = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}; for (a = 0; a < 10; + + a) if ((\bar{c}[a]\%2)=0) b + = c[a]; printf("%d", b); } How can a stack be implemented by queue(s)? -1 8 [Contd... ``` 17 09 - | 09 – | - I] | 9 | [Contd | |-------------|-----------------------|---|-------------------------------| | | | | | | | | | | | | _ | | | | | | | | | | <u> </u> | | | | 17 | Write SQL command | at find second maximum value of field1 in | table tname1. | | | | | | | | · | <u>,</u> | · · · | | | | | | | | | | | | | | | | | | operations. Write two | them. | | | —-
16 | | ssor translates the instruction ADD r_1 , r_2 , r_3 | T ₃ into six micro | | | | | ·
 | | | | | - | | | | | | | | | | | | | | • | | . | — I] | TO [Contd | |-------|--| | | | | | | | | | | | | | | | |) 1 | What does ACID stands for ? | | | | | | | | | | | | | | | dentity best normal form. | | | $\{CE \to D; D \to B; C \to A\}$
Find all candidate keys and identify best normal form. | | 9 | Suppose a relation $R = (A, B, C, D, E)$ with following functional dependencies | | | | | | | | | | | | | | | | | Note | e : | Attempt all not exceed | the twelve
50 words. | question | is. Each qu | estion ca | rries 5 m | arks. A | nswer shou | |------|-------|------------------------|--|---------------------------------------|--------------|------------------------|-------------|------------|-------------------| | 21 | Drav | v K-map of th | ne following | function | f(A,B,C) | $(D) = \sum_{i=1}^{n}$ | m (0, 1, 2, | 3, 5, 7, 8 | 3, 9, 11, 14) | | | - | | - | - | • | | | | | | | | | | | | | | | | | _ | | | <u> </u> | <u>-</u> | *·- <u>-</u> | | | | ··· | | | · | | <u> </u> | · · · · | . | <u></u> | | | | | | _ | | | | | | | | 1. | | | | | ······································ | _ | | <u>"</u> | | | | | _ | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | · | | | | | | | | | | | -,,, , | | _ | | | | - | ···· | | <u> </u> | | | | | | | ··· | | | | | | | | | | | | | | | . , | | • | | _ | | | ····· | | | | | , | | | - I |
] | | <u> </u> | | 11 | · . | | | [Contd | | | 12 | | [Con | |--------------------------------|------------------|---------------------------------------|-----------------| · · · | | | | | | | | | | · . | | | | | | | | | | · . | ···· | | | -on comparator that outputs 1 | mion z-on input | TYP Proutor man | . or oqual to 2 | | -bit comparator that outputs 1 | when 2-hit input | A is greater than | or equal to 2 | | | <u> </u> | • | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | -
-
- | | | | | <u>-</u> | | | | | _ | | | | | <u>-</u> | | | | | <u>-</u> | | | | | _ | | | - | **09** - - THÍ THY Ö EGAN Í MY NÍTH MEÐ EÐ ÞÍÐA | [] | 13 | | [Contd | |--------------------------|--------------------------|----------------|----------| • | | | ٠. | | | | | | | | | | | - | | | Design a circuit to comp | oute 2's complement of a | binary number. | <u> </u> | | | | <u> </u> | | | | | | | | | | | | - : | | | | | · | | _ | | | <u> </u> | | | | | | | - | | | |-------------|--|--| | - | | | | | | | | | • | | | - | •. | | | | •- | ······································ | | | | | | | | | | | $S = \{x_1, x_2, \dots, x_n\}$ and $T = \{y_1, y_2, \dots, y_i\}$
for $s, 1 \le x_i \le m$, $1 \le i \le n$ and $1 \le y_i \le m$, $1 \le i \le r$ for T
All x_i 's and y_i 's are integers. | | | 27 | is a subset of T in $O(n+r)$ time where | rsetS | | | | | | | | | | | | | | | · | · | me | result i | nto the | regist | er file | . Wha | at is the maximum clock rate of the pro | n and 2 ns to wi | |-------------|-------------|----------|-------------|----------|-----------------|---|----------------------------| | me | result i | nto the | regist | er file | . Wha | it is the maximum clock rate of the pro | n and 2 ns to wi | | me | result i | nto the | regist | er file | . Wha | it is the maximum clock rate of the pro | n and 2 ns to wi | | me | result i | nto the | e regist | er file | . Wha | it is the maximum clock rate of the pro | n and 2 ns to wi | | me | result i | nto the | e regist | er file | . Wha | at is the maximum clock rate of the pro | n and 2 ns to wi | | me | result i | nto the | e regist | er file | . Wha | at is the maximum clock rate of the pro | n and 2 ns to wi | | me | result i | nto the | e regist | er file | . Wha | at is the maximum clock rate of the pro | n and 2 ns to w | | me | result i | nto the | regist | er file | . Wha | at is the maximum clock rate of the pro | n and 2 ns to w | | me | result i | nto the | regist | er file | . Wha | at is the maximum clock rate of the pro | n and 2 ns to w
cessor? | | unc | | , - | 140 LV | | 3 1 1 1 1 1 C-4 | computation required by the instruction | 1 ^ | | If it | takes 5 | ns to | read a | ı instr | uction | n from memory, 2 ns to decode the instruction required by the instruction | uction, 3ns to re | | | | | | | | | | | | | | | <u> </u> | <u> </u> | | | | | | | | | | | | | | | | | | · · · · · | | | | ·
 | | | | | _ | | <u> </u> | | | | <u>.</u> | | | | | | | <u>.</u> | | | | | | | <u> </u> | | | | | | | | - | · | | | | <u></u> | | | | | | | | 0 | 0 | 0 | 0 | 0 | - | | | E | | 0 | 0 | 0 | 1 | - - | | | D | | 0
1 | 0
0 | 1
1 | 1
1 | | | | _ | 0 | _ | | 0 | 0 | | | | | | | · | | |----|--|--|--|-------| | | · · · · · · · · · · · · · · · · · · · | | | | | |); | | |
 | | | What is the SELECT corFROM ((SELECT B NATURAL . | output of the fount(*) orrower. Bank_Ma JOIN | 7000.00 Ilowing SQL query? anager FROM Loan_Reco | | | 31 | Database tal
Borrower
Ramesh
Suresh
Mahesh | ble by name Loar
Bank_Manager
Sunderajan
Ramgopal
Sunderajan | n_Records is given below
Loan_Amount
10000.00
5000.00 | | | | | | | | | | | - | |
 | | | | - | |
- | 09 - | Suppliers (Sid, SName, Address) | | | | | | | | | | | |---|--|-------------|---------------|-------------|--|--|--|--|--|--| | Part | ts(Pid, PName, Color) | | | | | | | | | | | Cata | alog(Sid, Pid, Cost) | | | | | | | | | | | (a) Find names of parts supplied by "ABC" | | | | | | | | | | | | (b) | Find name of parts for which there is some | supplier. | <u> </u> | | | | | | | | |
 | <u> </u> | <u>-</u> | - | | | | | | | | | | | | | · | | | | | | | | | | | | <u> </u> | • | | | | | | | | |
· | | | | · | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | · | | | | | | | | | | | <u> </u> | | | | | | | | |
 | | · |
 | | <u> </u> | <u> </u> | • | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | | | | Ι, | | | | | | | | | |
 | | | | | | | | | | | PART - C Marks : 100 | Note | :: | Attempt any 5 questions. Each question carries 20 marks. Answer should 200 words. | not excee | d | | |----------------|-----------------|---|-------------|-------------|---------------| | 33 | What | at are different addressing techniques? | | | - | | | - | | <u> </u> | _ | - | | | | | | - | .i -
- | | - | | | | | — | | · · · | <u> </u> | | | • | <u> </u> | | | | | | • | - | | | - - | | | • | · · | | | | | | | _ | | | <u></u> | | | | _ | | _ | | | | | | | | | | | | - | | | | | | | _ | | | | | | · | - | | | _ _ | | | | | | | <u></u> | | | | . — | | - | | | | | . | | | - | | | | | | | | | | ;
; | | | <u></u> | | | | : | | | | | | | ;
!
! | | |) – 1 J | | 18 | Contd | • | . 09 | | | | i jārā! Ārjūr jī | H WIN B WA | | | | 09 – 1] | | 19 | | [Contd | |----------|-------------|--|----|---------------------------------------| -2 | | | | | | | . | | | | | | | | | | | | | | <u></u> | | | | | | | | | | | | · <u>.</u> | | | · · · · · · | | • | | | <u> </u> | | | | <u></u> | | | | · | | | | | | | 44 | | | | · ·· | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | · | | | | ************************************** | | | | | | | | | |
 | | | | · | | 34 | (i) | $A \rightarrow B$ | sitive dep
following
, BC \rightarrow E
, C \rightarrow E, | and DE- | | valued de
depende | ependenc
encies in | y with help
relation set | of examples
t {ABCDE}, | s. Fo
wha | |---|---------------|---|---|---------------|---------------------------------------|----------------------|-----------------------|--|---------------------------|----------------| | | (11) | C→D, | , C→E, . | ар→Е | | | | _ ~ | | | | | | | · | | | | | | <u> </u> | | | | : | <u> </u> | | · · · | | | | - . | | | | | : | | | | _ | | | <u> </u> | <u> </u> | | | | - | | ···· | | | | | | | | | | | | - . | | | - | | | | _, | | | | - | <u> </u> | | · | | | | | | | | | <u> </u> | | | | | | | | | | | | ·
———————————————————————————————————— | | | <u> </u> | | | | _ | _ | | | | | | | | | | | | | | | | | | - " <u>"</u> | · · · · · · · · · · · · · · · · · · · | | | - | | | | | _ | | | | | | | | <u>.</u> | <u>-</u> | | • | | | | | | | | | <u> </u> | · | | | . | | | | | | | <u>. </u> | | · | | <u> , </u> | | | <u></u> | | | | | -, | | | | | | - | | - | . | | <u> </u> | | | | | | . | | · | - | | | | | | · | | ·- <u>-</u> - | | | | <u> </u> | | | | | | | | | | · | · | | | | | | · · · | | | | | | | | | | | | <u> </u> | | | | | | | | | <u> </u> | | | | | | | | | | ··· | | | | | | - | | | | | | | | <u></u> | | | | : | | - | | | | | | | | | | - . | | | | | | - | | <u> </u> | | | - | | |)9 – I j | | | | | 20 | | | • | [Cont | d | | 09-1} | | 21 . | | | [Contd | |-------|--|---------------------------------------|----------|---------|--------| | | | · | · | | | | | - | , | | | | | | | | | · | | | | | | | | | | | · | · | | | · 40 | | | · | | | | | | | · | | - | | | | | : | | | <u></u> | * | | | · | · · · · · · · · · · · · · · · · · · · | <u> </u> | | | | | | | | | | | | | | | ···. | | | | | | | | | | | ······································ | | | · · | · | | . <u> </u> | | | | | | | | | |------------|---------------------------------------|----------------|---------|-------------|-------------|----------|---------------------------------------|----------| | | | <u> </u> | | | | | | · | | | | | | | | | | | | | | | · · · - | | | | | | | | | | | | | | | | | | _ | | | | | | • | | | | ···· | | , | | | · | | | | <u> </u> | | | | | | | | | | | | | • | | | | | ··· | | | | - . | · ·· | | - · · · · · | | · · · · · · · · · · · · · · · · · · · | <u>.</u> | | _ | <u></u> | - 1-7111 | | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | _ | | | <u> </u> | | | | | | | | ···· | | | <u></u> <u></u> | | | _, | | | | | | | | | | | , | | | • | | | | | | · | | | | | | | | <u></u> | 09 - | |
 | <u> </u> | | |-------|------|----------|---------------------------------------| | | | | | | | | | | | |
 | · | | | | | | · | | |
 | | | | | | | | | |
 | | | | | | | | | | | | | | | | <u>.</u> | · · · · · · · · · · · · · · · · · · · | | |
 | | | | | | | | | |
 | | | | | | | | | 10 71 | | | | | 19-13 | 23 | | [Contd. | Thing fam in night faith | | | | | p. 0 da 0 0 3 | _ (1 | sequence | υ, | 5, | Э, | 0, . | z usinj | 3 1 | mp | flop | only. | |---------------|-------------|---------------|----------|---------------|------|-------------|----|---------------|----|-------------|-------------------------|----------|----------|------|-------------| | 1 | | | | | | | | | • | _ | | | | | | | | | | | | | | | | | - | | | | | | : | | | | | | | | | | | | | | | | | - | | | | | | | | | | - | | | | | | | | | | | | | | | | | _ | - | | | | | | | | | | • | , | | | <u> </u> | | | | | | | | | | | | <u></u> | | | | · | | | | · · · · · · | | | | | <u> </u> | | | | <u> </u> | | | | · | | | | | | | | | | | | | | | | | <u> </u> | | | | | | - | | | | | <u> </u> | | | | . | | | | | | | | | | | | · . | | | | | ··. | | | | | | , | | | | | | | | | <u>.</u> . | | | | | | | | | | | | <u> </u> | <u>. </u> . <u>.</u> | | | | | | | | | · | " | | | | | | | _ | | | | | | · · · | - | | | - | | | | | · " | | | _ | | | | | | | | | <u> </u> | | | | | | | | | · · | | ···· | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | · | | | | <u></u> | | . | | | | <u> </u> | | | | | | | | | | | 9 – I j | | • | | | | 24 | | | | | | | | ſ | Contd | | | | | | | | | | | | | | | | | | the state of s | | 09 – I } | | 25 | | [Contd | |---------------------------------------|-------------|------------|----------|---------------------------------------|--------------| | | | 1 A | | | ·
•• | | | | | <u> </u> | === | | | | | | | · | | | | | | | | | | | | | | , no | | | · . | | | | | | | | | | | | <u>.</u> | | | | | <u> </u> | | | | | | | _ | 1-T-An-Tr- | · · | | | | | | : | | · · · · · · · · · · · · · · · · · · · | | | | | :
 | | | · · · · · | | | | | | | -
- | | · · · · · · · · · · · · · · · · · · · | | - | | | - <u>-</u> . | | | . ——— | | | | | | | | · . | | | | THE BUILDING OF THE STATE TH | | 26 | · · · · · · · · · · · · · · · · · · · | | [Contd.,. | |----------|----|---------------------------------------|----|---------------------------------------| | | | | | | | | | | | · · | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | ·. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | | <u> </u> | | | | | | | | | | <u> </u> | | | | | | | | | | | | | Α 09-1] Contd... | ································ | -1] | | 28 | [Contd | |----------------------------------|---------------------------------------|---------------|-------------|----------| | | | | | | | | | | |
 | | | | | · | | | | | | |
 | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | |
 | | | | | | | | | | | | <u>-</u> | | | | | | | | | · · · · · · · · · · · · · · · · · · · | - | | · | | | | | | | | | | _ | | | | | | | · |
 | | | | | | | | | | | |
 | | | | | |
 | | -1] | | . 29 | | [Contd | |-------------|---------------------------------------|--------------|---|----------| | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | - | | | | | | | | | | | | | · | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | | | | | | | | <u>-</u> | | | - : | | | | | | | | | | | | <u> </u> | | | | | | | | | | | <u>-</u> | | | | | | - I] | 30 | | | [Contd | |---------------------------------------|-------------|-------------|---------------------------------------|--| <u> </u> | | | | | | | | | | | | <u> </u> | | <u> </u> | | | | | | | | | | | · | <u>. </u> | | | | | , | | | | | | | <u> </u> | | | | | - | | | | | | | | | | <u> </u> | | | | | | | | · · · · · · · · · · · · · · · · · · · | <u> </u> | | | <u> </u> | | <u></u> | | | | | | | | | | | | ·——— | | | | | | | | | | | | - | ·
 | | · · · · · · · · · · · · · · · · · · · | | | | | | 09-1} | | 31 | [Contd | |--------------|---|----|-------------| | | | | | | | | | | | | | , | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | - | | | <u> </u> | | - | · | <u> </u> | | | | | | | | | | | | | | | · | | | |