पुस्तिका में पृष्ठों की संख्या—16 No. of pages in Booklet -16 पुस्तिका में प्रश्नों की संख्या—100 No. of Questions in Booklet -100 Subject Code — 03

विषय / SUBJECT : Electrical Engineering

NEAP-81

PAPER-II

Question Paper Booklet No. प्रश्न-पत्र पुस्तिका संख्या 3003257

अधिकतम अंक : 200

Maximum Marks: 200

समय : 2.00 घण्टे Time: 2.00 Hours

प्रश्न–पत्र पुस्तिका एवं उत्तर पत्रक के पेपर सील/पॉलिथीन बैग को खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न–पत्र पुस्तिका पर वही प्रश्न–पत्र पुस्तिका संख्या अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई भिन्नता हो तो वीक्षक से दूसरा प्रश्न–पत्र प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।

The candidate should ensure that Question Paper Booklet No. of the Question Paper Booklet and Answer Sheet must be same after opening the Paper Seal/ polythene bag. In case they are different, a candidate must obtain another Question Paper from the Invigilator. Candidate himself shall be responsible for ensuring this.

परीक्षार्थियों के लिए निर्देश

- 1. सभी प्रश्नों के उत्तर दीजिए।
- सभी प्रश्नों के अंक समान हैं।
- प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।
- 4. एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा।
- 5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया है। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बबल को उत्तर पत्रक पर नीले बॉल प्वॉइंट पेन से गहरा करना है।
- 6. OMR उत्तर पत्रक इस परीक्षा पुरितका के साथ रखा है। जब आपको परीक्षा पुरितका खोलने को कहा जाए, तो उत्तर पत्रक निकाल कर ध्यान से केवल नीले बॉल प्वॉइंट पेन से विवरण भरें। OMR उत्तर पत्रक पर प्रश्न-पत्र पुरितका संख्या ध्यानपूर्वक भरें।
- 7. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। (गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है। किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।)
- 8. मोबाइल फोन अथवा इलेक्ट्रॉनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित है। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है, तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानीपूर्वक सही भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से काटे जा सकते हैं।
- 10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की त्रुटि हो तो प्रश्न के हिन्दी तथा अंग्रेजी रूपान्तरों में से अंग्रेजी रूपान्तर मान्य होगा।

चेतावनी: अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराते हुए विविध नियमों—प्रावधानों के तहत कार्यवाही की जाएगी। साथ ही विभाग ऐसे अभ्यर्थी को भविष्य में होने वाली विभाग की समस्त परीक्षाओं से विवर्जित कर सकता है

INSTRUCTIONS FOR CANDIDATES

- 1. Answer all questions.
- 2. All questions carry equal marks.
- 3. Only **one** answer is to be given for each question.
- If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. The OMR Answer Sheet is kept with this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully with blue ball point pen only. Please fill the Question Paper Booklet no. on the OMR Answer Sheet carefully.
- 7. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable materials with him/her will be strictly dealt as per rules.
- Please correctly fill your Roll Number in O.M.R. Sheet.
 Marks can be deducted for filling wrong or incomplete Roll Number.
- If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorized material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted. Department may also debar him/her permanently from all future examinations.

इस परीक्षा पुस्तिका को तब तक न खोलें जब तक कहा न जाए। Do not open this Test Booklet until you are asked to do so.

[03]

ELECTRICAL ENGINEERING

1.	The f	requency of ripple in the output	voltage of a three	phase controlled brid	ge rectifier depends
	(1)	firing angle	(2)	load inductance	
	(3)	load resistance	(4)	supply frequency	
2.		ristor has internal power dissip		************	pient temperature of
	- OK	. If thermal resistance is 1.6°C/		7.2	1
	(1)	114°C	(2)	164°C	
	(3)	94°C	(4)	84°C	
3.		eter has a full-scale deflection of			The response of the
э.		r is square law. Assuming sprin			
	(1)	0.25 Ampere	(2)	0.50 Ampere	45 degree will be-
. ==			(4)	0.707 Ampere	
1	(3)	0.67 Ampere MVA, 10 kV synchronous gen	, ,		(in n u) to a base of
4.			iciator nas $A_d = 0$.	4 p.u. The Ad value (in p.u.) to a base of
		MVA, 11 kV is- 5.78	(2)	0.279	
	(1)	0.412	(4)	0.44	
_	(3)				equancy that can be
5.		clo-converter is operating on a		ie range or output jie	equency mai can be
		ned with acceptable quality, is-		0 122 Hz	
	(1)		, ,	0 – 132 Hz	
,	(3)		(4)	0 – 128 Hz	of 250 Watta The
6.		kVA transformer has iron loss			s of 250 watts. The
		mum efficiency of the transform			
	(1)	500 W	(2)	400 W	
_	(3)	300 W	(4)	275 W	
7.		system described by the followi			
	x =	$\begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y$	= [1 1] x		
	1.	Completely controllable			
	2.	Completely observable			
	Whic	ch of the above statement is/are	correct?	. E .	(4)
	(1)	1 only	(2)	2 only	.41
	(3)	Both 1 and 2	(4)	Neither 1 nor 2	()
8.	An a	nalog voltmeter uses external m	ultiplier settings. V	With a multiplier setti	ng of 20 k Ω , it reads
		V and with a multiplier setting	•	•	
		oltmeter reads-		100 M	,
	(1)	371 V	(2)	383 V	
	(3)	394 V	(4)	406 V	2000
	(3)	~2.1.1	(4)		

9.	The output Q_n of a $J - K$ flip – flop is zero. I input J_n and K_n are, respectively-	t changes	s to 1 when a clock pulse is applied. The
	(1) 1 and X	(2)	0 and X
	(3) X and 0	(4)	X and 1
10.	The Bode plot of the open – loop transfer fund		
741	• Slope -40 dB/decade ; $\omega < 0.1 \text{ rad/s}$		is good to described as follows.
11	• Slope -20 dB/decade ; $\omega < 0.1 \text{ rad/s}$		
	• Slope 0 dB ; $\omega > 10 \text{ rad/s}$	uu/s	
	The system described will have-		
	(1) 1 pole and 2 zeros	(2)	2 poles and 2 zeros
12	(3) 2 poles and 1 zero	(4)	1 pole and 1 zero
11.	A transformer is rated at 11 kV/0.4 kV, 500 k		1 No. 2 - 2 ■ 16 Charles and the Charles and Charles
	of the transformer when connected to an infin		
	(1) 20 MVA	(2)	10 MVA
	(3) 15 MVA	(4)	5 MVA
12.	A synchronous motor is floating on infinite m	0.0	
12.	it will draw-	iams at n	o load. If its excitation is now increased,
	(1) Unity power factor current	(2)	Zero power factor lagging current
	(3) Zero power factor leading current	(4)	No current
13.	Match list – I (Electromagnetic law) with list –		
13.	using the codes given below the lists-	· II (uiiiei	ential form) and select the correct answer
	List – I	Li	st – II
23.2		. V .	$\frac{\text{st} - \text{II}}{\vec{D}} = \rho_{\text{v}}$
			$\vec{J} = -\frac{\partial \vec{H}}{\partial t}$
	B. Faraday's law	z. v.	$J = -\frac{1}{\partial t}$
	C. Gauss law	3	$ \begin{array}{l} \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t} \\ \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \end{array} $
	D. Current continuity equation 4	l. ∇	$\times \overrightarrow{E} = -\frac{\partial B}{\partial t}$
	Codes:		bt
	A B C D		
	(1) 1 2 3 4		
10	(2) 3 4 1 2		
	(3) 1 4 3 2		
	(4) 3 2 1 4		
14.	The open-loop transfer function of a feedback	control s	system is given by-
	G(s) $K(s+2)$		
	$\frac{H(s)}{S(s+4)(s^2+4s+8)}$		
	One of following is a set of the centroid point	coordina	ates, where asymptotes of the root loci of
	above transfer function meet in the s – plane:		
	(1) (-1, 0)	(2)	(-2,0)
	$(3) \left(\frac{-10}{3}, 0\right)$	(4)	(2, 0)

- The close-loop transfer function of a control system is given by $\frac{C(s)}{R(s)} = \frac{1}{(1+s)}$. For the input $r(t) = \sin(t)$, the steady state value of c(t) is equal to-
 - (1) $\frac{1}{\sqrt{2}}\cos(t)$

(2) 1

 $(3) \quad \frac{1}{\sqrt{2}} \sin(t)$

- (4) $\frac{1}{\sqrt{2}} \sin(t \frac{\pi}{4})$
- 16. If $\overrightarrow{H} = 0.1 \sin(10^8 \pi t + \beta y) \, \hat{a}_x$ A/m for a plane wave propagating in free space, then the time average poynting vector is-
 - (1) $(0.6\pi \sin^2 \beta y) \hat{a}_y W/m^2$

(2) $-0.6\pi \hat{a}_y \text{ W/m}^2$

(3) $1.2\pi \hat{a}_x \text{ W/m}^2$

- $-1.2\pi \hat{a}_x \text{ W/m}^2$
- 17. For any superconductor material, which statements are true out of the following statements that superconductivity can be destroyed by-
 - (i) increasing the temperature above a certain limit
 - (ii) applying a magnetic field above a certain limit
 - (iii) passing a current, above a certain limit, through the material
 - (iv) decreasing the temperature to a point below the critical temperature
 - (1) (ii), (iii) and (iv) are correct
- (2) (i), (iii) and (iv) are correct
- (3) (i), (ii) and (iii) are correct
- (4) (i), (ii) and (iv) are correct
- 18. The polar plot (for positive frequencies) for the open loop transfer function of a unity feedback control system is shown in the given figure-

The phase margin and the gain margin of the system are respectively-

(1) 150° and 4

(2) 150° and 3/4

(3) 30° and 4

- (4) 30° and $\frac{3}{4}$
- 19. If the fault current is 2000 Ampere, the relay setting is 50% and CT ratio is 400/5, then the plug setting multiplier will be-
 - (1) 25 Amp.

(2) 15 Amp.

(3) 50 Amp.

- (4) None of these.
- 20. If the corona loss on a particular system at 50 Hz is 1 kW/phase/km, then corona loss on the surface of the same system with supply frequency at 25 Hz will be-
 - (1) 1 kW/phase/km

(2) 0.5 kW/phase/km

(3) 0.667 kW/phase/km

(4) None of these

21. Which one of the following is the steady-state error for a step input applied to a unity feedback system with the open loop transfer function-

$$G(s) = \frac{10}{s^2 + 14s + 50}$$

(1) $e_{ss} = 0$ (2) $e_{ss} = 0.83$

(3) $e_{ss} = 1$

- (4) $e_{ss} = \infty$
- 22. For a p-pole machine, the relation between electrical (θ_e) and the mechanical angle (θ_m) degrees is given by-
 - $\theta_{\rm e} = \frac{P}{(2 * \theta_{\rm m})}$

(2) $\theta_{\rm m} = \left(\frac{P}{2}\right) * \theta_{\rm e}$

 $\theta_{\rm e} = \theta_{\rm m}$

- (4) $\theta_e = \left(\frac{P}{2}\right) * \theta_{\rm m}$
- 23. The below figure shows the root locus of a unity feedback system. The open loop transfer function of the system is-

s(s+1)(s+2)

(2) $\frac{k s}{(s+1) (s+2)}$ (4) $\frac{k (s+2)}{s (s+1)}$

- 24. If in a 3-phase, half-wave inverter, if per phase input voltage is 200 V, then the average output voltage is-
 - **(1)** 233.91 V

(2) 116.95 V

(3) 202.56 V

- (4) 101.28 V
- In a unity feedback control system with $G(s) = \frac{4}{s^2 + 0.4s}$ when subjected to unit step input, it 25. is required that system response should be settled within 2% tolerance band, the system settling time is-
 - (1) 1s

(2) 2s

(3)10s

- (4) 20s
- 26. The rotor power output of 3 – phase induction motor is 15 kW. The rotor copper losses at a slip of 4% will be-
 - (1) 600 W

625 W (2)

650 W (3)

(4) 700 W

	Stabil	11 0 11									
	(1)	Using	series co	ompensat	ors						
	(2)	Using	parallel	transmiss	sion line	es					
	(3)	Reduc	ing volta	age of tra	nsmissi	on					
	Whic	h of the	above st	atements	are corr	rect?					
	(1)	1 only					(2)	2 only			
	(3)	2 and 3	k				(4)	1 and 2			
28.	Equal	Area cr	iterion i	s employ	ed to de	termine-					
	(1)	The ste	ady stat	te stabilit	y		(2)	The transient	stability		
	(3)	The rea	active po	ower limi	t		(4)	The rating of	circuit bre	eaker	
29.	In the			C system,		S-					
	(1)	chargir	ig curre	nt but no	skin eff	ect	(2)	no charging o	urrent but	skin eff	ect
	(3)		E	ng current			(4)	both charging	g current a	nd skin	effect
30.			250	of a powe			oved by	'-			
	(1)	•		clearing t		•	(2)	using double	circuit li	ine inste	ead of
								single circuit	line		
	(3)	single	pole sw	itching			(4)	decreasing ge	enerator in	ertia	
31.	Whic	h one of	the foll	owing int	errupts	is both le	vel and	edge sensitive	?		
	(1)	RST 7	.5				(2)	RST 5.5			
	(2)	TRAP					(4)	INTR			
	(3)	111111					(- /				
32.			e SBX g	given belo	w is exe	ecuted by	2020200	5 processor. Th	e value in	the accu	ımulatoı
32.	The s	ubroutin		given belo executio			an 808.		e value in	the accu	ımulatoı
32.	The s	ubroutin	fter the		n of the		an 808.		e value in	the accu	ımulatoı
32.	The s	ubroutin	fter the	executio MVI A	n of the , 99H		an 808.		ne value in	the accu	ımulatoı
32.	The s	ubroutin	fter the	MVI A ADI 11	n of the , 99H H		an 808.		e value in	the accu	imulatoi
32.	The s	ubroutin	fter the	executio MVI A	n of the , 99H H		an 808.		ne value in	the accu	imulatoi
32.	The s	ubroutin	fter the	MVI A ADI 11	n of the , 99H H		an 808.		e value in	the accu	
32.	The s	ubroutin	fter the	executio MVI A ADI 11 MOV (n of the , 99H H		an 808.		e value in	the accu	imulator
32.	The simme	ubrouting diately a	fter the	executio MVI A ADI 11 MOV (n of the , 99H H		an 808. ne will	be-	e value in	the accu	
	(1) (3)	ubroutin ediately a 00H 99H	SBX:	executio MVI A ADI 11 MOV C RET	n of the , 99H H C, A	subroutir	(2) (4)	11H AAH		the accu	
32.	(1) (3)	ubroutin ediately a 00H 99H	sBX:	executio MVI A ADI 11 MOV C RET	n of the , 99H H C, A	subroutir	(2) (4)	11H		the accu	
	(1) (3)	ubroutin ediately a 00H 99H	microp	executio MVI A ADI 11 MOV C RET	n of the , 99H H C, A	subroutir	(2) (4)	11H AAH		the accu	
	(1) (3)	ooh 99H ntel 8085	microp MVI A	executio MVI A ADI 11 MOV C RET	n of the , 99H H C, A	subroutir	(2) (4)	11H AAH		the accu	
	(1) (3)	ooh 99H ntel 8085	microp MVI A MVI E SNOP	executio MVI A ADI 11 MOV C RET	n of the , 99H H C, A	subroutir	(2) (4)	11H AAH		the accu	
	(1) (3)	ooh 99H ntel 8085	microp MVI A MVI I K:NOP	executio MVI A ADI 11 MOV C RET	n of the , 99H H C, A	subroutir	(2) (4)	11H AAH		the accu	
	(1) (3)	ooh 99H ntel 8085	microp MVI A MVI I K:NOP ADD RLC	executio MVI A ADI 11 MOV C RET processor A, 10H B, 10H	n of the , 99H H C, A	subroutir	(2) (4)	11H AAH			
	(1) (3)	ooh 99H ntel 8085	microp MVI A MVI I C:NOP ADD RLC JNC I	executio MVI A ADI 11 MOV C RET	n of the , 99H H C, A	subroutir	(2) (4)	11H AAH		the accu	
	(1) (3) An In	ooh 99H ntel 8085	microp MVI A MVI I C:NOP ADD RLC JNC I HLT	executio MVI A ADI 11 MOV C RET processor A, 10H B, 10H B BACK	n of the , 99H H C, A	subrouting the p	(2) (4) program	11H AAH n given below-			
	(1) (3) An In	ooh 99H ntel 8085	microp MVI A MVI I C:NOP ADD RLC JNC I HLT	executio MVI A ADI 11 MOV C RET processor A, 10H B, 10H B BACK	n of the , 99H H C, A	subrouting the p	(2) (4) program	11H AAH n given below-			
	(1) (3) An In	ooh 99H ntel 8085	microp MVI A MVI I C:NOP ADD RLC JNC I HLT	executio MVI A ADI 11 MOV C RET processor A, 10H B, 10H B BACK	n of the , 99H H C, A	subrouting the p	(2) (4) program	11H AAH n given below-			

34. Match List-I with List-II and select the correct answer using the code given below the lists:

	Ī	ist-I			<u>List-II</u>
A. Imme	diate a	1	. LDA 30FF		
B. Implie	cit addı	essing		2	. MOV A, B
C. Regis	ter add	ressing		3	. LXI H, 2050
D. Direc	t addre	ssing		4	. RRC
Code:	A	В	C	D	
(1)	3	4	2	1	
(2)	1	4	2	3 .	
(3)	3	2	4	1	
(4)	1	2	4	3	

35. The crystal frequency of 8085 microprocessor is 6 MHz. The time required to execute instruction XTHL over this microprocessor is-

(1) $5.33 \, \mu s$

(2) 10.67 μs

(3) $4.33 \, \mu s$

(4) 8.67 µs

36. A computer employs RAM chips of 256 bytes and ROM chips of 1024 bytes. If the computer system needs 1 kB of RAM and 1 kB of ROM, then how many address lines are required to access the memory?

(1) 10

(2) 11

(3) 12

(4) 13

37. A BJT is biased with a power supply of 12V. For minimum heat dissipation, the drop across the transistor will be-

(1) 6V

(2) 9V

(3) 12V

(4) > 9V but < 12V

38. Consider the following J-K flip-flop:

In the above J-K flip-flop, $J=\overline{Q}$ and K=1. Assume that the flip-flop was initially cleared and then clocked for 6 pulses. What is the sequence at the Q output?

(1) 010000

(2) 011001

(3) 010010

(4) 010101

39.		naximum deviation allowed in an FM broadd 0kHz, find the bandwidth of the FM signal.		stem is 75 kHz. If the	modulating signal
	(1)	85 kHz	(2)	170 kHz	
	(3)	75 kHz	(4)	340 kHz	
40.		nmeter of range 0-25A has a guaranteed acc			ding The current
40.		ared by the ammeter is 5A. The limiting error			ding. The editent
	(1)	2%	(2)	2.5%	
	(3)	4%	(4)	5%	
11		VDT produces an output of 24V rms for a c	, ,		m. This voltage is
41.		ared with a 5V full-scale voltmeter with 100			
		divisions. The resolution of the voltmeter is		r divisions, each major	division readable
	(1)	0.125 mm	(2)	$0.104 \times 10^{-3} \mathrm{mm}$	
		20 SP 30 10 10 10 10 10 10 10 10 10 10 10 10 10	271.007		
	(3)	1.25 mm	(4)	$10.4 \times 10^{-3} \mathrm{mm}$	
42.		digit, 2V full scale dual slope ADC has its			ns. If the input to
	the A	DC is $(1 + 1 \sin 314t)$ V, then the ADC outp	ut wil		
	(1)	1.000	(2)	1.999	
	(3)	1.414	(4)	1.500	
43.		h one of the following meters has man arement?	kimun	n loading effect on	the circuit under
	(1)	1000 Ω/volt	(2)	100 Ω/volt	
	(3)	1m Ω/volt	(4)	10m Ω/volt	
44.	25	oridge is suitable for measuring inductance of			g inductors?
	(1)	Having Q value less than 10	(2)	Having Q value great	
	(3)	Of any value of Q	(4)	Having phase angle of	
	(-)			large	- 63
45.	In a P	CM system of telemetry, the quantization n	oise d	epends on -	1,57
	(1)	The sampling rate and quantization levels	(2)	The sampling rate on	ly
	(3)	The number of quantization levels only	(4)	Information provided	is not sufficient
46.		h one of the following capacitor-star split-	-phase	induction motors wil	I have the largest
*		of capacitance?			11.5(1)
	(1)	94W, 3450 rpm	(2)	187 W, 1725 rpm	(1)
	(3)	373W, 1140 rpm	(4)	560 W, 1140 rpm	(3)
47.	, ,	ower transformer, the core loss is 50W at 4	OHz aı	nd 100W at 60Hz, und	er the condition of
		maximum flux density in both cases. The c			ible co
	(1)	64 W		73 W	aul a
	(3)	82 W	(4)	91 W	11 (1
48.	1.00	maximum power delivered by 15kW, 3-		star connected, 4k	V, 48 pole 50Hz
33.40.63		ronous motor with synchronous reactance of			
**	(1)	4271.2 kW	(2)	3505 kW	51 / E
	(3)	1206.1 kW	(4)	2078 kW	1.5
		1200:1 K11	(-1)	2010 K 11	natives. 12
1027	21	D 0 01			
[03]	, D	Page 8 of 1	0		

	conve	erter is	;-											
	(1)	0° ≤	$\alpha \le 15$	0°					(2)	$60^{\circ} \le \alpha \le$	≤ 120°			
	(3)	30° s	≤ α ≤ 1	50°					(4)	180° ≤ α	≤ 360°			
50.	The 1	atchin	g curre	nt of S	SCR i	n the	belov	v circu	uit is 4m	A. The mi		width c	of the g	ate pulse
			turn-or											
							0.	1 H	·					
							-\ \ \ \	00-	\dashv	\neg				
						丄,	00 V							
						T	,							
	231													
	(1)	6 µs			8	,			(2)	4 μs				
	(3)	2 μs							(4)	1 μs				
51.	In dc	chopp	ers, pe	r unit	ripple	is ma	aximu	ım, w	hen the	duty cycle	'α' is-		8 8	
	(1)	0.2							(2)	0.5				
	(3)	0.7							(4)	0.9				
52.	Matcl	h List-	I with	List-II	and s	select	the c	orrect	answer	using the c	ode giv	en belo	w the l	ists-
		List						<u>t –II</u>						
	A.	Ferr				1.	Me	issner	effect					
	B.	Sup	ercond	uctor		2.	Far	aday e	effect					
	C.	Qua	rtz			3.	Hy	steresi	is					
	D.	Iron				4.	Pie	zoelec	etricity					
	Cod	es:	A	В	C	I)							
	(1)		3	1	4	2	2							
	(2)		2	1	4		3					20		
	(3)		3	4	- 1	2	2							
	(4)		2	4	1		3							
52				9.5										
53.							tricai	insula	W 250	terial is-				
	(1)	_	dielect		engtn				(2)	high rela				
5 4	(3)		density			•		c	(4)	High inst			1000	
54.										connected				
									97.0	50 kV tra				towards
				tions,	the va	ilue o	f the	transn		oltage wave	at the j	unction	ı is-	
	(1)	30 k							(2)	20 kV				
		80 k							(4)	-30 kV		35.1		
55.		100	oair arr		•	rovid	es-		4-1	was to				
	(1)	17000	high f						(2)	Very low	48			
	(3)	Samo	eβas c	of one	transi	stor			(4)	None of	he abov	e .		
r	.													
03]	Ð						Pa	ige 9 o	f 16					
		0	4											

A three-pulse converter has a freewheeling diode across its load. The operating range of the

49.

56.	Which	type of motor is mo	st suitable for co				
	(1)	Reluctance motor		(2)	Hysteresis		
	(3)	Shaded pole motor	· · · · · · · · · · · · · · · · · · ·	(4)	Stepper m		minimal value ita
57.		length of a wire of re	esistance 'R' is i	iniformly str	retched to	n times its of	riginai vaiue, its
		esistance is-		(2)	R/n	0.8 0	
	(1)	nR n ² /R		(2) (4)	R/n^2		
58.	(3) Which	n of the following	statement holds	` '		f electric and	l magnetic flux
30.	densit		statement nords	Tor the dr			
	(1)	both are zero		(2)	these are	zero for station	c densities but
	7-X				non zero	for time varyi	ng densities
	(3)	it is zero for the elec	ctric flux density	(4)	it is zero f	or the magnet	tic flux density
59.	The b	ridge method commo	only used for fine	ding mutual	inductance	is-	
	(1)	Heaviside Campbel	l bridge	(2)	Schering	100 A	
	(3)	De Sauty bridge		(4)	Wien bric	•	
60.		o-amp, having a slew					
		maximum amplitude				minimum fre	quency at which
		ew rate limited distor	tion would set in				
	(1)	1.0 MHz		(2)	6.28 MH: 62.8 MH:		
(1	(3)	10.0 MHz	f 1 0 02 uf i	(4)			of Aluminium of
61.		led-paper capacitor o					
	width	6cm, and wax impre	egnated paper of	thickness 0	.06 mm, w	hose relative	permittivity is 3.
	The l	ength of foil strips sh	ould be-				
	(1)	0.3765 m		(2)	0.4765 m	L	
	(3)	0.5765 m		(4)	0.7765 m	Į.	
62.	A ser	ies R-L-C circuit has	R=50W, L= 10	0 μH and C=	=1µF. The	lower half po	wer frequency of
	the ci	rcuit is-					*
	(1)	30.55 kHz		(2)	3.055 kH	Z	A.
	(3)	51.92 kHz		(4)	1.92 kHz		
63.		0 kV transmission lin					
	MW		2 2	Ü			
	(1)	1204		(2)	1504		
	(3)	2085		(4)	2606	* *	
64.		rmature of a single pl		1470			
	unifo	rmly. The induced vo	oltage in each tu	rn is 2V(rms			winding is-
	(1)	2 T Volt		(2)	1.11 T V		r.epr
	(3)	1.414 T Volt		(4)	1.273 T	Volt	
[03]	H		Pag	e 10 of 16			
					- 5		

- 65. An 8 pole, DC generator has a simplex wave-wound armature containing 32 coils of 6 turns each. Its flux per pole is 0.06 Wb. The machine is running at 250 rpm. The induced armature voltage is-
 - (1) 96

(2) 192

(3) 384

- (4) 768
- 66. The velocity of light in a particular medium is 10⁸ m/s. What is the relative permittivity of the medium?
 - **(1)** 1.732

(2) 3

(3) 9

- (4) 0.333
- 67. A dc to dc transistor chopper supplied from a fixed voltage DC source feeds a fixed resistive-inductive load and a free-wheeling diode. The chopper operates at 1 kHz and 50% duty cycle. Without changing the value of the average dc current through the load, if it is desired to reduce the ripple content of load current, the control action needed will be-
 - (1) increase the chopper frequency keeping its duty cycle constant.
 - (2) increase the chopper frequency and duty cycle in equal ratio.
 - (3) decrease only the chopper frequency.
 - (4) decrease only the duty cycle.
- 68. A PWM switching scheme is used with a three phase inverter to -
 - (1) reduce the total harmonic distortion with modest filtering
 - (2) minimize the load on the DC side
 - (3) increase the life of the batteries
 - (4) reduce low order harmonics and increase high order harmonics
- 69. The triac circuit shown in Figure controls the ac output power to the resistive load. The peak power dissipation in the load is –

Figure

(1) 3968 W

die.

(2) 5290 W

(**3**) 7935 W

(4) 10100 W

70. For the circuit shown below, the input resistance $R_{11} = \frac{V_1}{I_1} \Big|_{I_2 = 0}$ is-

(1) -3Ω

(2) 3Ω

(3) 12Ω

- **(4)** 13Ω
- 71. Obtain the energy stored in each capacitor as shown in figure below under DC conditions:

(1) 16 mJ, 68 mJ

(2) 32 mJ, 68 mJ

(3) 32 mJ, 64 mJ

- (4) 16 mJ, 128 mJ
- 72. The number of comparisons carried out in a 4 bit flash-type A/D converter is-
 - **(1)** 16

(2) 15

(3) 4

- **(4)** 3
- 73. In an 8085 microprocessor, the contents of accumulator, after the following instructions are executed will become-

XRA A

MVIB F0 H

SUB B

(1) 01 H

(2) OF H

(3) F0 H

- (4) 10 H
- 74. Laplace transform of sin³ 2t u(t) is-
 - $\frac{24}{(s^2+4)(s^2+36)}$
- (2) $\frac{1}{(s^2+4)(s^2+4)}$
- $\frac{48}{(s^2+4)(s^2+36)}$
- 75. For a feedback control system of type-2, the steady state error for a ramp input is 57.
 - (1) infinity

(2) constant

(3) zero

(4) indeterminate

- **76.** The phase lead compensation is used to-
 - (1) Increase rise time and decrease overshoot.
 - (2) Decrease both rise time and overshoot.
 - (3) Increase both rise time and overshoot.
 - (4) Decrease rise time and increase overshoot.
- 77. A 0-10 mA PMMC ammeter reads 4mA in a circuit. Its bottom control spring snaps suddenly. The meter will now read nearly-
 - (1) 10 mA

(2) 8 mA

(3) 2 mA

- (4) zero
- 78. Two systems with impulse responses $h_1(t)$ and $h_2(t)$ are connected in cascade. Then the overall impulse response of the cascaded system is given by-
 - (1) Product of $h_1(t)$ and $h_2(t)$

(2) Sum of $h_1(t)$ and $h_2(t)$

(3) Convolution of $h_1(t)$ and $h_2(t)$

(4) Subtraction of $h_1(t)$ and $h_2(t)$

79. If the transmission parameters of the below network are A=C=1, B=2 and D=3, then the value of Z_{in} is-

 $\begin{array}{cc} (1) & \frac{12}{13}\Omega \end{array}$

 $\frac{13}{12}\Omega$

(3) 3Ω

- (4) 4Ω
- 80. For a power system network with n nodes, Z₃₃ of its bus impedance matrix is j 0.5 per unit. The voltage at node 3 is 1.3 ∠10° per unit. If a capacitor having reactance of −j 3.5 per unit is now added to the network between node 3 and the reference node, the current drawn by the capacitor per unit is-
 - (1) $0.325 \angle 100^{\circ}$

(**2**) 0.325 ∠80°

(3) 0.371 ∠100°

- (**4**) 0.433 ∠80°
- 81. The binary equivalent of hexadecimal number 4FAD is-
 - **(1)** 0101 1111 0010 1100

(2) 0100 1111 0010 1100

(3) 0100 1111 1010 1101

- **(4)** 0100 1110 0010 1101
- 82. The Boolean expression ABCD+ \overline{ABCD} + \overline{ABCD} + \overline{ABCD} is equivalent to-
 - (1) A

(2) AC

(3) ABC

- **(4)** 1
- 83. For a periodic square wave, which one of the following statements is TRUE?
 - (1) The Fourier Series Coefficients do not exist.
 - (2) The Fourier Series Coefficients exist but the reconstruction converges at no point.
 - (3) The Fourier Series Coefficients exist and the reconstruction converges at most point.
 - (4) The Fourier Series Coefficients exist and the reconstruction converges at every point.

92.	The	line A to neutral	voltage is 10 /	15° V for a bal	ance	ed three phase star-connected load	
	phas	e sequence ABC	The voltage of	line B with res	nect	to line C is given by-	with
	(1)	10√3 ∠105° v	V	(2	рссі)	10 ∠105 ° V	
	(3)			(4)	$10\sqrt{3} \angle -90^{\circ} V$	
93.	A ho			s kent at notant	, :.1 -	of 1 Volt. The total electric flux con	
	out o	of the concentric s	spherical surfac	e of radius R(>)	1a1 0 ·) ic	of I voit. The total electric flux con	ning
	(1)	4 πε r	- F			- 4 πε r ²	
	(3)	4 πετR		(4) 7	TCD2	
94.	A po	tential field is gi	ven by $\phi = 2xy^2$	$^2 - 3v^2z$ If $\diamond o$, , and	2 are the unit vectors along x, y and	
	direc	tions respectively	, the field inter	sity at (0, 1, 0)	anu is-	iz are the unit vectors along x, y ar	nd z
	(1)	0 V/m	,	(2)		2 x̂ - 3 ẑ	3
	(3)	$-2\hat{\mathbf{x}} + 3\hat{\mathbf{z}}$	**************************************	(4)		$2\hat{x} + 3\hat{z}$	
95.	If in a	a transistor, $\alpha = 0$	0.98, I _{CO} =6 mic	ro Ampere and	IR =	= 100 micro Ampere, then the valu	o of
	I _C wil	ll be-		P	-0	Too micro Ampere, then the valu	6 01
	(1)	2.3 milli Ampe	re	(2)	3	3.1 milli Ampere	
	(3)	4.6 milli Ampe		(4)		5.2 milli Ampere	
96.				-port reactive	netu	work (say LC network) is given by-	
	(1)	$(s^2+1)(s^2+2)$	· · · · · · · · · · · · · · · · · · ·	port reactive	iiciw	(o ² + 1) (o ² + 2)	
	. ,	$\frac{(s^2+3)(s^2+4)}{s(s^2+4)(s^2+4)}$		(2)	_($\frac{(s^2+1)(s^2+3)}{(s^2+2)(s^2+4)}$ $\frac{1}{(s+1)}$	
	(3)		2 123		S	$s(s^2+2)(s^2+4)$	s
	. (3)	$\frac{(s^2)(s^2+1)}{(s^2+2)(s^2+2)}$		(4)	_	1	
07		$(s^2+2)(s^2+3)$			(:	s+1)	
97.	For se	ea water with $\sigma =$	5 mho/m and a	$\varepsilon_r = 80$, what is	the	distance for which radio signal can	be
	transn	nitted with 90% a	attenuation at 25	5kHz?			
	(1)	0.322 m		(2)	3	.22 m	
	(3)	32.2 m		(4)		22 m	
98.	When	a bipolar junction	n transistor is op	erating in the sa	itura	ation mode, which one of the follow	ino
	staten	ient is TRUE abo	ut the state of its	s collector-base	(CB	3) and the base-emitter (RF) junction	ns?
	(1)	The CB Junction	n is forward bia	sed and the BE	iunc	ction is reverse biased	
	(2)	The CB junction	n is reversed an	d the BE junction	on is	s forward biased.	
	(3)	Both the CB and	d BE junctions	are forward bias	sed.		
99.	(4) 1 1 n	Both the CB and	BE junctions	are reverse bias	ed.	20 S S S S S S S S S S S S S S S S S S S	
,,,	rated f	for 230 V and 51	West a speed of	ound DC machi	ine v	with negligible armature resistance	is
	form a	lan winding W	w at a speed of	1200 rpm. If the	ne sa	ame armature coils are reconnected	to
	rom of	the reconnected	machine if the	voitage (in voits	s) an	ad power (in kW) respectively at 12	.00
	(1)	230 and 5	macmine if the				
	(3)	115 and 2.5		(2) (4)		15 and 5 30 and 2.5	
100.		ade of three iden	tical modulo-5	counters has an	OVE	erall modulus of	
,	(1)	5	1.7	(2)	25		
	(3)	125		(4)	62		
						1 1 W	
			· .	XX			
P	٦.						
127 L	~M					(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	

Space for Rough Work

meel wes