प्रश्न पुरितका / QUESTION BOOKLET

कोड / Code: 27

पुस्तिका क्रम

विषय / Subject:

Automobile & Mechanical Engineering

PAPER - 3

0145273

पुस्तिका में प्रश्नों की संख्या /

Number of Questions in Booklet: 150

पुरितका में पृष्ठों की संख्या /

Number of Pages in Booklet: 64

समय / Time : 3 घंटे / Hours

पूर्णीक / Maximum Marks : 200

INSTRUCTIONS

Answer all questions.

All questions carry equal marks.

Only one answer is to be given for each question.

If more than one answers are marked, it would be treated as wrong answer.

Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.

Circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.

1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer.

1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)

The candidate should ensure that Series Code of the Question Paper Booklet and Answer Sheet must be same after opening the envelopes. In case they are different, a candidate must obtain another question paper of the same series. Candidate himself shall be responsible for ensuring this.

Mobile Phone or any other electronic caddet in the examination hall is strictly prohibited. A candidate found

paper of the same series. Candidate nimself shall be responsible for ensuring this.

Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable material with him/her will be strictly dealt as per rules.

Please cirrectly fill your Roll Number in O.M.R. Sheet. 5 marks will be deducted for filling wrong or incomplete Roll Number.

incomplete Holl Number.

10. If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

English Version of the question, the English Version will be treated as standard.

If a candidate is found copying or if any unauthorised material is found in his/her possession, if a candidate is found copying or if any unauthorised material is found in his/her possession, if a candidate is found copying or if any unauthorised material is found in his/her possession, if a candidate is found copying or if any unauthorised material is found in his/her possession, if a candidate is found copying or if any unauthorised material is found in his/her possession, if a candidate is found copying or if any unauthorised material is found in his/her possession, if a candidate is found copying or if any unauthorised material is found in his/her possession, if a candidate is found copying or if any unauthorised material is found in his/her possession, if a candidate is found copying or if any unauthorised material is found in his/her possession, and he/she would liable to be prosecuted under Section 3 of the R.P.E. (Prevention of Unfairmeans) Act, 1992. Commission may also debar him/her permanently from all future examinations of the Commission.

निर्देश

सभी प्रश्नों के उत्तर दीजिए ।

सभी प्रश्नों के अंक समान हैं।

प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।

एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा । प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया है। अध्यर्थी को सही उत्तर निर्दिष्ट

करते हुए उनमें से केवल एक गोले अथवा बबल को उत्तर-पत्रक पर नीले बॉस प्वाइंट पेन से गहरा करना है ।

प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है । किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।

प्रश्न-पत्र पुरितका एवं उत्तर पत्रक के लिफाफे की सील खोलने पर परिक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुरितका पर वहीं सीरीज अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई मिन्नता हो तो वीक्षक से प्रश्न-पत्र की ही सीरीज वाला दूसरा प्रश्न-पत्र का लिफाफा प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।

मोबाईल फोन अथवा इलेक्ट्रोनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णत्या वर्जित हैं। यदि किसी अध्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।

कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानी पूर्वक सही भरें । गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांको में से अनिवार्य रूप से कार्ट जाएंगे।

10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की जुदि हो तो प्रश्न के हिन्दी तथा अंग्रेजी रूपान्तरों में से अंग्रेजी

चेतावनी :. अगर कोई अप्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, उस अम्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराई जायेगी और आर. पी. ई. (अनुचित साधनों की रोकथाम्) अधिनियम, 1992 के नियम 3 के तहत कार्यवाही की जायेगी। साथ ही आयोग ऐसे अभ्यर्थी को मविष्य में होने वाली आयोग की समस्त परीक्षाओं से विवर्जित

27 A I

2

[Contd...

- 1 To transmit maximum power by a belt drive, it is necessary that : Maximum tension in the belt = × centrifugal tension in the belt. What is the correct option for the blank space?
 - (1)1

2

(3) 3 (4) $\frac{1}{3}$

एक पष्टा चालन द्वारा अधिकतम शक्ति पारेषित करने हेतु यह आवश्यक है कि : पष्टे में अधिकतम तनाव =......× पट्टे में अपकेन्द्री तनाव ।

रिक्त स्थान के लिये सही विकल्प क्या है ?

(1) 1

(2)

(3)

- (4)
- 2 The relation between the pitch 'p' and pitch circle diameter 'D' of chain is given by:
 - (1) $p = D \sin\left(\frac{180^{\circ}}{T}\right)$ (2) $p = D \sin\left(\frac{90^{\circ}}{T}\right)$
 - (3) $p = D \sin\left(\frac{120^{\circ}}{T}\right)$ (4) $p = D \sin\left(\frac{360^{\circ}}{T}\right)$

Where T' is the number of teeth.

चेन की पिच 'p' एवं पिच वृत्त व्यास 'D' के मध्य सम्बंध दिया जाता है :

(1)
$$p = D \sin\left(\frac{180^{\circ}}{T}\right)$$
 (2) $p = D \sin\left(\frac{90^{\circ}}{T}\right)$

$$(2) p = D \sin\left(\frac{90^{\circ}}{T}\right)$$

(3)
$$p = D \sin\left(\frac{120^{\circ}}{T}\right)$$
 (4) $p = D \sin\left(\frac{360^{\circ}}{T}\right)$

$$(4) p = D \sin\left(\frac{360^{\circ}}{T}\right)$$

जहाँ 'T' दाँतों की संख्या है ।

3 Which relation is incorrect for module of gear 'm'?

(1)
$$m = \frac{\text{Pitch Circle diameter}}{\text{Number of teeth}}$$

(2)
$$m = \frac{\text{circular pitch}}{\pi}$$

(3)
$$m = \frac{1}{\text{Diametral Pitch}}$$

(4)
$$m = \frac{\pi}{\text{Circular pitch}}$$

गियर के मॉड्यूल 'm' के लिए कौनसा सम्बन्ध गलत है?

(1)
$$m = \frac{\text{Ver}}{\text{circle}} \text{ for all }$$

$$(2) m = \frac{q \pi d \mu}{\pi}$$

(3)
$$m = \frac{1}{\text{cuthlu fta}}$$

$$(4) m = \frac{\pi}{q \pi \ln u \ln u}$$

4 Which one of the following option is correct to describe the speed ratio of a simple gear train?

(1)
$$\frac{N_1}{N_2} = \frac{T_1}{T_2}$$

(2)
$$\frac{N_1}{N_2} = \frac{T_2}{T_1}$$

(3)
$$\frac{N_1}{N_2} = \sqrt{\frac{T_2}{T_1}}$$

(4)
$$\frac{N_1}{N_2} = \sqrt{\frac{T_1}{T_2}}$$

Where:

 N_1 = Revolutions per minute of driving gear

 N_2 = Revolutions per minute of driven gear

 T_1 = Number of teeth on driving gear

 T_2 = Number of teeth on driven gear

एक सरल गियर ट्रेन का वेगानुपात दर्शाने हेतु निम्न में से कौनसा विकल्प सही है?

(1)
$$\frac{N_1}{N_2} = \frac{T_1}{T_2}$$

(2)
$$\frac{N_1}{N_2} = \frac{T_2}{T_1}$$

(3)
$$\frac{N_1}{N_2} = \sqrt{\frac{T_2}{T_1}}$$

(4)
$$\frac{N_1}{N_2} = \sqrt{\frac{T_1}{T_2}}$$

जहाँ :

 $N_1 = चालक गियर के चक्र प्रति मिनट$

 $N_2 =$ चालित गियर के चक्र प्रति मिनट

 $T_1 = \text{times}$ िंग्यर पर दाँतों की संख्या

 $T_2 = चालित गियर पर दाँतों की संख्या$

- When there is a reduction in the amplitude of vibrations over every cycle of vibration, then the body is said to have:
 - (1) Free vibrations
- (2) Forced vibrations
- (3) Damped vibrations
- (4) Torsional vibrations

जब कम्पनों के आयाम में प्रत्येक कम्पन चक्र में कमी होती हो, तब पिण्ड के कम्पनों को कहा जाता है :

(1) मुक्त कम्पन

- (2) बलात् कम्पन
- (3) अवमंदित कम्पन
- (4) एँठ कम्पन
- Two shafts A and B are made of same material. The shaft A is solid and its diameter is D. The shaft B is hollow with outer diameter D and inner diameter $\frac{D}{2}$. If the maximum torque transmitted by shaft A is 'T', what will be the maximum torque transmitted by the shaft B?
 - (1) $\frac{T}{8}$

(2) $\frac{T}{4}$

(3) $\frac{15}{16}T$

(4) $\frac{16}{15}T$

दो शाफ्ट A व B समान पदार्थ से निर्मित हैं। शाफ्ट A ठोस है एवं इसका व्यास D है । शाफ्ट B खोखला है जिसका बाह्य व्यास D एवं आंतरिक व्यास $\frac{D}{2}$ है। यदि शाफ्ट A द्वारा पारेषित अधिकतम एँठ 'T' हो, तो शाफ्ट B द्वारा पारेषित अधिकतम एँठ क्या होगी ?

(1) $\frac{T}{8}$

(2) $\frac{T}{4}$

(3) $\frac{15}{16}T$

(4) $\frac{16}{15}T$

7.	Shoo	k absorber in vehicles is used for:						
	(1)	absorbing the shock energy						
	(2)	dissipating the shock energy						
	(3)	increasing the shock energy						
	(4)	producing the shock energy						
	वाहन	वाहनों में शॉक एब्जोर्बर का प्रयोग किया जाता है :						
	(1)	शॉक ऊर्जा को अवशोषित करने के लिए						
	(2)	शॉक ऊर्जा को छितराने के लिए						
	(3)	शॉक ऊर्जा को बढ़ाने के लिए						
	(4)	शॉक ऊर्जा को उत्पन्न करने के लिए						
	- ,							
8	Sprii	ng Index of a coil spring is:						
	(1)	Ratio of coil diameter to wire diameter						
	(2)	Ratio of wire diameter to coil diameter						
	(3)	Value of stiffness						
	(4)	Value of quality of spring						
	एक कुण्डलित स्प्रिंग का स्प्रिंग सूचकांक है :							
	(1) कुण्डली व्यास एवं तार व्यास का अनुपात							
	(2) तार व्यास एवं कुण्डली व्यास का अनुपात							
	(3)	(3) कड़ापन का मान						
	(4)	स्प्रिंग की गुणवत्ता का मान						
9	Whi	ch one of the following option is based on 'Pascal's Law'?						
	(1)	Hydraulic braking system (2) Carburettor						
	(3)	Fluid flywheel (4) Engine Lubrication System						
	निम्न	में से कौनसा विकल्प 'पास्कल के नियम' पर आधारित है ?						
	(1)	द्रवीय ब्रेकिंग प्रणाली (2) कार्डुरेटर						

(3) व्रवीय फ्लाईव्हील

इंजन स्नेहन प्रणाली

- 10 Bernoulli's theorem is based on the law of conservation of
 - (1) Energy

- (2) Mass
- (3) Momentum
- (4) Work

बरनौली सिद्धान्त _____ संरक्षण नियम पर आधारित है ।

(1) জর্জা

(2) द्रव्यमान

(3) संवेग

(4) कार्य

In a centrifugal pump, Q = discharge, H = head, N = speed. Then the specific speed will be:

 $(1) \quad \frac{N\sqrt{H}}{Q^{3/4}}$

 $(2) \quad \frac{H\sqrt{N}}{O^{3/4}}$

 $(3) \quad \frac{N\sqrt{H^{3/4}}}{Q}$

 $(4) \quad \frac{N\sqrt{Q}}{H^{3/4}}$

एक अपकेन्द्री पम्प का निस्सरण = Q, शीर्ष = H, चाल = N है, तो इसकी विशिष्ट चाल होगी :

 $(1) \quad \frac{N\sqrt{H}}{O^{3/4}}$

 $(2) \quad \frac{H\sqrt{N}}{O^{3/4}}$

 $(3) \quad \frac{N\sqrt{H^{3/4}}}{O}$

 $(4) \quad \frac{N\sqrt{Q}}{H^{3/4}}$

	(2)	Two suction valves and two delivery valves					
	(3)	(3) One suction valve and two delivery valves					
	(4) Two suction valves and one delivery valve						
	एक द्वि-क्रिया प्रत्यागामी पम्प में होते है :						
	(1) •	एक चूषण वाल्व व एक प्रदायी	वाल्व	•			
	(2)	दो चूषण वाल्व व दो प्रदायी व	ल्व				
	(3)	एक चूषण वाल्व व दो प्रदायी व	वाल्व				
	(4)	दो चूषण वाल्व व एक प्रदायी व	वाल्व				
13		any reversible process, the oundings is:	chang	ge in entropy of the system and its			
	(1)	Negative	(2)	Zero			
	(3)	Positive	(4)	Infinite			
	किसी	प्रतिक्रम्य प्रक्रम में तंत्र तथा इस	के परि	रेवेश की एंट्रोपी में परिवर्तन होता है :			
	(1)	ऋणात्मक	(2)	शून्य			
	(3)	धनात्मक	(4)	अनन्त			
14	The	value of Universal Gas cons	stant i	is :			
	(1)	8.314 kJ/kg mole °K					
	(2)	8.314 Joule/kg mole oK					
	(3)	0.8314 kJ/kg mole °K					
	(4)	83.14 Joule/kg mole °K					
	सार्व	गैस स्थिरांक का मान है :					
	(1)	8.314 किलोजूल/किग्रा मोल ^० के	ल्विन				
	(2)	8.314 जूल/किग्रा मोल ^० केल्विन	Ī				
	(3)	0.8314 किलोजूल/किग्रा मोल ◊	केल्विन	न			
	(4)	83.14 जूल/किग्रा मोल °केल्विन	· ·				
27	Al		8	f Contd			

In a double-acting reciprocating pump, there are :

(1) One suction valve and one delivery valve

15	The	first type of perpetual motion machine is the one, which:
	(1)	Works without any external energy
	(2)	Does not work without external energy
	(3)	Can completely convert the heat given into work
	(4)	Can not completely convert the heat given into work
	प्रथम	प्रकार की शाश्वत मशीन, वह मशीन है जो :
	(1)	बिना किसी बाह्य ऊर्जा के कार्य करती है
	(2)	बिना किसी बाह्य ऊर्जा के कार्य नहीं करती है
	(3)	प्रदान की गई ऊष्मा को पूर्ण रूप से कार्य में परिवर्तित कर सकती है
	(4)	प्रदान की गई ऊष्मा को पूर्ण रूप से कार्य में परिवर्तित नहीं कर सकती है
16	The	second law of thermodynamics defines:
	(1)	Enthalpy (2) Entropy
	(3)	Heat (4) Work
	ক্ত	ागतिकी का द्वितीय नियम परिभाषित करता है :
	(1)	एन्याल्पी (2) एन्ट्रोपी
	(3)	ऊष्मा (4) कार्य
17	A C	Carnot cycle consists of :
	(1)	Two constant volume processes and two isothermal processes
	(2)	Two isothermal processes and two adiabatic processes
	(3)	Two isothermal processes and two constant pressure processes
	(4)	Two constant volume processes and two constant pressure processes
	एक	कार्नोट चक्र बना होता है :
	(1)	दो स्थिर आयतन प्रक्रमों तथा दो समतापी प्रक्रमों से
	(2)	दो समतापी प्रक्रमों तथा दो रुद्धोध्म प्रक्रमों से
	(3)	दो समतापी प्रक्रमों तथा दो स्थिर दाब प्रक्रमों से

दो स्थिर आयतन प्रक्रमों तथा दो स्थिर दाव प्रक्रमों से

18	Air is compressed by a double-stage compressor (with complete intercooling), from 1 four pressure, 27°C temperature to 36 bar pressure. What should be the interstage pressure for the minimum work of the compressor?					
	(1)	18 bar	(2)	18.5 bar		
	(3)		(4)	9 bar		
	` '		. ,	तिन के साथ), 1 bar दाब, 27°C ताप		
	_			nया जाता है। सम्पीड़ित्र के न्युनतम कार्य		
	_	मध्यवर्ती दाब का मान क्या होन	_	•		
	(1)	18 bar	(2)	18.5 bar		
	(3)	6 bar	(4)	9 bar		
19	The	comfort conditions in air-co	onditio	oning are:		
	(1)	0°C DBT and 0% RH				
	(2)	22°C DBT and 50% RH				
	(3)	30°C DBT and 80% RH				
	(4)	40°C DBT and 90% RH				
	वातानुकूलन में सुखीय अवस्थाएँ होती हैं :					
	(1)	0°C शुष्क बल्ब ताप एवं 0%	सापेक्ष	न आर्द्रता		
	(2)	22°C शुष्क बल्ब ताप एवं 50)% सा	पेक्ष आर्द्रता		
	(3)	30°C शुष्क बल्ब ताप एवं 80)% सा	पेक्ष आर्द्रता		
	(4)	40°C शुष्क बल्ब ताप एवं 90)% सा	पेक्ष आर्द्रता		
20	'One	Ton of Refrigeration' is ap	proxi	mately equal to :		
	(1)	1 kW	(2)	2.5 kW		
	(3)	3.5 kW	(4)	5 kW		
	'प्रशी	तन का एक टन' लगभग समतु	ल्य हो	ता है:		
-	(1)	1 kW	(2)	2.5 kW		
	(3)	3.5 kW	(4)	5 kW		
27_/	A]		10	[Contd		

- 21 In which of the following type of engine, the inlet and exhaust valves are fitted in the cylinder head?
 - (1) F-head

(2) I-head

(3) L-head

(4) T-head

निम्न में से किस प्रकार के इंजन में प्रवेश व निकास वाल्वों को सिलेन्डर शीर्ष में • फिट किया होता है?

(1) F-शीर्ष

(2) I-शीर्ष

(3) L-शीर्ष

(4) T-शीर्ष

COMME TO

22 Which one of the following statements is false?

- (1) In two stroke engine, the working cycle is completed in one revolution of crank.
- (2) Thermal efficiency of two stroke engine is less than four stroke engine.
- (3) There are ports in two stroke engines.
- (4) Thermal efficiency of diesel engine is less than petrol engine.

निम्न में से कौनसा एक कथन गलत है?

- (1) दिस्ट्रोक इंजन का कार्यकारी चक्र क्रेंक के एक चक्कर में पूर्ण होता है ।
- (2) द्विस्ट्रोक इंजन की तापीय दक्षता चतुःस्ट्रोक इंजन से कम होती है ।
- (3) ब्रिस्ट्रोक इंजन में द्वार (पोर्ट) होते हैं ।
- (4) डीज़ल इंजन की तापीय दक्षता पेट्रोल इंजन से कम होती है।

	22	In a four stroke engine, the speed of the engine is N r.p.m. The speed	
the things to	23	of the cam shand will be	*
		(1) $\frac{N}{2}$ r.p.m. (2) N r.p.m.	•
		(3) 2 N r.p.m. (4) 4 N r.p.m.	
•		एक चतुःस्ट्रोक इंजन में इंजन की गित N चक्र प्रति मिनट है । कैम शाफ्ट की गित होगी:	•
		(1) $\frac{N}{2}$ चक्र प्रति मिनट (2) N चक्र प्रति मिनट	: ; ; ;
		(3) 2 N चक्र प्रति मिनट (4) 4 N चक्र प्रति मिनट	
	24	Select the correct option after considering the following statements:	•
		 I - Fly wheel of four-stroke engine is lighter as compared to that of two-stroke engine of the same power. 	
		II – Fly wheel of multi-cylinder engine is heavier as compared to that of single-cylinder engine of the same power.	
		The options are as follows:	
		(1) I-True, II-Faise (2) I and II - Both True	
		(3) I and II - Both False (4) I - False, II -True	
		निम्न कथनों पर विचार कर सही विकल्प को चुनिए :	
		 समान शक्ति के द्वि-स्ट्रोक इंजन की तुलना में चतुःस्ट्रोक इंजन का फ्लाई व्हील हल्का होता है। 	
		II – समान शक्ति के एकल-सिलेण्डर इंजन की तुलना में बहु-सिलेन्डर इंजन का फ्लाई व्हील भारी होता है।	¥
		विकल्प निम्नानुसार है :	14
		(1) I-सत्य, II-असत्य (2) I एवं II - दोनों सत्य	
·		(3) I एवं II - दोनों असत्य (4) I - असत्य, II - सत्य	
		(3) 1 34 11 - 4141 51114 (4) 1 51114, 12 5114	• •
	27_	[Contd [Contd	
	: .		
·			
· .	• .		

25	Which one of the following is not a function of piston rings?
	(2) To control the lubrication between the piston and cylinder walls
	(3) To assist the cooling of piston
	(4) To assist the cooling of cylinder liner
	निम्न में ₊से कौनसा कार्य पिस्टन रिंगों का नहीं है ?
	(1) पिस्टन व सिलेण्डर के बीच एक गतिशील सील का कार्य करना
	(2) पिस्टन व सिलेण्डर की दीवारों के मध्य स्नेहन को नियंत्रित करना
	(3) पिस्टन के शीतलन में सहायता करना
	(4) सिलेण्डर लाइनर के शीतलन में सहायता करना
26	Select the correct option for functions of the deflector on piston of two stroke engines:
	I - To deflect the fresh charge towards top at the time of entrance.
	II - To force out the burnt gases towards exhaust port.
	III - To increase the strength of piston top.
	The options are as follows:
	/4) T 4 T
	(3) I and III (4) I, II and III
	द्विस्ट्रोक इंजनों के पिस्टन पर बने विक्षेपक के कार्यों हेतु सही विकल्प चुनिए :
	I — नये प्रभरण को प्रवेश के समय ऊपर की ओर विक्षेपित करना ।
	II — जली हुई गैसों को रेचन द्वार की ओर धकेलना ।
	III – पिस्टन के ऊपरी भाग की सामर्थ्य बढ़ाना ।

विकल्प निम्नानुसार है :

(2) 11 एवं 111

(3) I एवं III

(4) ।, ॥ एवं ॥।

-	engin	ies ?	• • • • • •		, to the
	(1)	Hit and Miss governing	(2)	Qualitative governing	ţ
	(3)	Quantitative governing	(4)	Combination governi	ng
-,	पेट्रोल	इंजनों में निम्न में से कौनसी	अधिनि	यंत्रण विधि प्रयोग की उ	जाती है ?
	(1)	घात व चूक अधिनियंत्रण	(2)	गुणात्मक अधिनियंत्रण	
	(3)	मात्रात्मक अधिनियंत्रण	(4)	संयुक्त अधिनियंत्रण	
28	Valve	e-overlapping happens :			
	(1)	Completely before T.D.C.			
	(2)	Completely after T.D.C.			
	(3)	Partially before T.D.C. and	l parti	ally after T.D.C.	
	· (4)	Completely before B.D.C.			
	वाल्व	–अतिव्याप्तिकरण घटित होता है	:		
	(1)	पूर्णतः टी.डी.सी. से पूर्व			
	(2)	पूर्णतः टी.डी.सी. के पश्चात्			
	(3)	अंशतः टी.डी.सी. से पूर्व व	भंशतः	टी.डी.सी. के पश्चात्	
	(4)	पूर्णतः बी.डी.सी. से पूर्व			
29	Ву	applying choke in a petrol	engine	, the engine gets :	
	(1)	Very lean mixture	(2)	Lean mixture	
	(3)	Rich mixture	(4)	Extra spark energy	
	पेटोल	। इंजन में चोक लगाने पर इंज	न को	मिलता है :	

Which one of the following governing method is used in petrol

(2) क्षीण मिश्रण

(4) अतिरिक्त स्पार्क ऊर्जा

(1) अत्यन्त क्षीण मिश्रण

(3) प्रचुर मिश्रण

30	The veh	water pump generally emp	loyed	for cooling of engine of a
	(1)	Gear type	(2)	Vane type
	(3)	Centrifugal type	(4)	Reciprocating type
	वाहर	न के इंजन शीतलन के लिए साम	ान्यतः	काम में लाया जाने वाला पम्प होता है:
	(1)	गियैर प्रकार	(2)	वेन प्रकार
	(3)	अपकेन्द्री प्रकार	(4)	प्रत्यागामी प्रकार
31		notor-cycles fitted with four- sed to operate the valves.	-stroke	e engines, mechanism
	(1)	Chain drive	(2)	Gear drive
	(3)	Belt drive	(4)	Push rod
	चतुःर	द्रोक इंजनों वाली मोटर साइकिलों	में वा	ल्व प्रचालन हेतु यंत्रावली
	का !	प्रयोग किया जाता है।		
	(1)	चेन चालन	(2)	गियर चालन
	(3)	पञ्च चालन	(4)	पुश रॉड
32	Whie	ch one of the following is	the co	orrect sequence ?
	(1)			opet → Push Rod → Rocker Arm
	(2)			sh Rod → Tappet → Rocker Arm
	(3)			sh Rod \rightarrow Tappet \rightarrow Rocker Arm
	(4)			sh Rod → Rocker Arm → Tappet
	निम्न	में से सही क्रम कौन-सा है ?	· .	
	(1)	क्रैंक गियर \rightarrow कैम गियर \rightarrow	टैपेट	→ पुश रॉड → रॉकर आर्म
	(2)	क्रैंक गियर → कैम गियर →	पुश	रॉड → टैपेट → रॉकर आर्म
	(3)	कैम गियर \rightarrow क्रैंक गियर \rightarrow	पुश	रॉड → टैपेट → रॉकर आर्म
	(4)	क्रैंक गियर \rightarrow कैम गियर \rightarrow	पुश	रॉड → रॉकर आर्म → टैपेट
7_A	1	, i	15	[Contd

- 33 In individual pump fuel injection system of diesel engine, what is the function of fuel feed pump?
 - (1) To supply correct quantity of diesel to the injector
 - (2) To produce high pressure for the injection of diesel
 - (3) To supply diesel from tank to injection pump
 - (4) To supply diesel to the injector at correct time डीज़ल इंजन की पृथक पम्प ईंधन अन्तःक्षेपण प्रणाली में ईंधन भरण पम्प का क्या कार्य होता है?
 - (1) डीज़ल की सही मात्रा को अन्तःक्षेपित्र तक पहुँचाना
 - (2) डीज़ल अन्तःक्षेपण हेतु उच्च दाब उत्पन्न करना
 - (3) डीजल को टंकी से अन्तःक्षेपण पम्प तक पहुँचाना
 - (4) डीज़ल को सही क्षण पर अन्तःक्षेपित्र तक पहुँचाना
- 34 Aluminium cylinder block engines require :
 - (1) Cast Iron Liners
- (2) Aluminium Liners
- (3) Brass Liners
- (4) Liners not required

एल्यूमिनियम सिलेण्डर ब्लॉक इंजनों में आवश्यकता होती है :

- (1) ढ़लवाँ लोहे लाइनर्स की
- (2) एल्यूमिनियम लाइनर्स की
- (3) पीतल लाइनर्स की
- (4) लाइनर्स की आवश्यकता नहीं होती
- 35 Firing order of six cylinder in-line engine is :

(1)
$$1-6-3-5-2-4$$

$$(2) \quad 1 - 4 - 3 - 2 - 6 - 5$$

$$(3) \quad 1 - 3 - 6 - 2 - 4 - 5$$

$$(4) \quad 1 - 5 - 3 - 6 - 2 - 4$$

छः सिलेण्डर एक-रेखीय इंजन का दहन-क्रम है :

(1)
$$1-6-3-5-2-4$$

$$(2) \quad 1 - 4 - 3 - 2 - 6 - 5$$

$$(3) \quad 1-3-6-2-4-5$$

$$(4) \quad 1 - 5 - 3 - 6 - 2 - 4$$

36	"The	e thermostat valve of engine cooling system of vehicle
	Sele	ect the correct option for the blank space above :
	(1)	remains closed while starting the engine from cold condition
	(2)	opens as soon as the engine is started from cold condition
	(3)	opens as soon as the engine is started and then closed after some time
	(4)	remains closed when the engine is not running and always remains open when the engine is running
	''वाह	इन की इंजन शीतलन प्रणाली का तापस्थापी वाल्व।''
	उपरो	क्त रिक्त स्थान हेतु सही विकल्प चुनिये :
	(1)	ठण्डी अवस्था से इंजन चालू करते समय बंद रहता है
	(2)	ठण्डी अवस्था से इंजन चालू करते ही खुल जाता है
	(3)	इंजन चालू करते ही खुल जाता है, फिर कुछ समय बाद बंद हो जाता है
	(4)	इंजन नहीं चलने पर बंद रहता है और इंजन चलते रहने पर हमेशा खुला रहता है
. 37	Wha	at is the advantage of using 'Pressure Cap' on the radiator?
	(1)	Evaporation of coolant is increased by its use.
	(2)	It prevents formation of vacuum in the system.
	(3)	By using this, atmospheric pressure is always maintained in the system.
	(4)	Boiling point temperature of the coolant is decreased by its use.
	रेडिये	टर पर 'दाब-टोपी/प्रेशर कैप' प्रयोग करने का क्या लाभ है?
	(1)	इसके प्रयोग से शीतलक का वाष्पीकरण बढ़ता है ।
	(2)	यह प्रणाली में निर्वात उत्पन्न होने से रोकती है ।
	(3)	इसके प्रयोग से प्रणाली में सदैव वायुमण्डलीय दाब बना रहता है ।
	(4)	इसके प्रयोग से शीतलक का क्वथनांक तापमान कम हो जाता है।
27_£	y ∙]	17 [Contd

	(i)	Steel	(2)	Cast-iron
	(3)	Plastic	(4)	Brass
	रेडिये	टर नलिकाएँ सामान्यतः बनी होत	ती है	:
	(1)	इस्पात	(2)	ठलवाँ लोहा
	(3)	प्लास्टिक •	(4)	पीतल
39		erally which one of the follo	owing	lubrication system is used in a
	(1)	Petroil	(2)	Splash
	(3)	Pressure	(4)	Dry sump
	प्रायः	एक कार इंजन में निम्न में से	कौनस	ी स्नेहन प्रणाली प्रयुक्त होती है ?
	(1)	पेट्रोइल	(2)	उछाल
	(3)	दाब	(4)	शुष्क सम्प
40	Then	modynamic processes in die	sel cy	cle are :
	(1)	Two isentropic, one consta	nt vo	lume, one constant pressure
	(2)	Two isentropic and two ise	othern	nal
	(3)	Two isentropic and two co	nstan	t volume
	(4)	Two isentropic and two co	nstant	pressure
	डीज़ल	चक्र में ऊष्मागतिक प्रक्रम होते	हैं :	
	(1)	दो सम एन्ट्रोपी, एक स्थिर आ	यतन,	एक स्थिर दाब
	(2)	दो सम एन्ट्रोपी एवं दो समताप	î	
	(3)	दो सम एन्ट्रोपी एवं दो स्थिर	आयतन	•
	(4)	दो सम एन्ट्रोपी एवं दो स्थिर	दाब	
27_A	.]		18	[Contd

Radiator tubes are generally made of:

41	Whic	th one of the following has	zero	cetane number ?
	(1)	α – methylnaphthalene	(2)	n-heptane
	(3)	Tetra ethyl lead	(4)	Tri-methyl butane
	निम्न	में से किसका सीटेन अंक शून्य	होता	है ?
	(1)	lpha —िमथाइलनेफ्थलीन	(2)	n-हेप्टेन
	(3)	टेट्रा इथाइल लेड	(4)	ट्राई-मिथाइल ब्यूटेन
42	What	t is the advantage of using	high o	octane number fuel in petrol car ?
	(1)	Less detonation tendency	(2)	Less harmful emissions
	(3)	Low fuel consumption	(4)	Less wear and tear of engine
	पेट्रोल	कार में उच्च ऑक्टेन अंक वा	ले ईंघ	न के प्रयोग से क्या लाभ है ?
	(1)	कम अधिस्फोटन प्रवृत्ति	(2)	
	(3)	कम ईंघन खपत	(4)	इंजन की कम धिसावट व टूटफूट
43	Ceta	ne number is measure of :		
	(1)	Auto-ignition temperature	(2)	Viscosity of fuel
	(3)	Calorific value of fuel	(4)	Ignition quality of fuel
	सीटेन	अंक मापक है :		
	(1)	स्वः प्रज्वलन तापक्रम का	(2)	ईंधन की श्यानता _ु का
	(3)	ईंधन के ऊष्मीय मान का	(4)	ईंधन की प्रज्वलन गुणवत्ता का
44	Octa	ne number of iso-octane is	:	
	(1)	92.30	(2)	100
	(3)	0	(4)	96
	आइस	-ऑक्टेन का ऑक्टेन अंक है	:	
	(1)	92.30	(2)	100
	(3)	0	(4)	96
07 A				

45	Whic	h one of the following is i	not a	part of MPFI petrol engine?		
	(1)	Fuel injector	(2)	Carburettor		
	(3)	MAP sensor	(4)	Electronic Control Unit		
	निम्न	में से कौनसा MPFI पेट्रोल इंप	नन का	। भाग नहीं है ?		
	(1)	ईंधन अन्तःक्षेपित्र	(2)	कार्बुरेटर		
	(3)	MAP संवेदी	(4)	इलेक्ट्रोनिक नियंत्रक इकाई		
46	In M	IPFI system, the fuel is inje	ected	into the :		
	(1)	Carburettor	(2)	Intake manifold		
	(3)	Cylinder	(4)	Before air cleaner		
	MPF	I प्रणाली में, ईंधन अन्तःक्षेप कि	व्या ज	ाता है :		
	(1)	कार्बुरेटर में	(2)	प्रवेश मेनीफोल्ड में		
	(3)	सिलेण्डर में	(4)	वायु शोधक से पूर्व		
47	Press to:	sure in the fuel rail of CRI	OI die	sel engine is approximately equal		
	(1)	10 MPa	(2)	25 MPa		
	(3)	100 MPa	(4)	1000 MPa		
	CRDI डीजल इंजन की ईंधन रेल में दाब लगभग होता है :					
	(1)	10 मेगा पास्कल	(2)	25 मेगा पास्कल		
	(3)	100 मेगा पास्कल	(4)	1000 मेगा पास्कल		
27_A	1		20	[Contd		

- 48 In a spark ignition engine, the increase of compression ratio will:
 - (1) increase knocking tendency
 - (2) reduce knocking tendency
 - (3) no effect on knocking
 - (4) reduce pre-ignition effect

एक स्पार्क प्रज्वलन इंजन में, सम्पीड़न अनुपात बढ़ाने से :

- (1) अपस्फोटन प्रवृत्ति बढ़ेगी
- (2) अपस्फोटन प्रवृत्ति कम होगी
- (3) अपस्फोटन पर कोई प्रभाव नहीं होगा
- (4) पूर्व-प्रज्वलन प्रभाव कम होगा
- 49 For a given engine setting and fuel, what is meant by Highest Useful Compression Ratio?
 - (1) The critical compression ratio, above which knock occurs.
 - (2) The critical compression ratio, at which the efficiency of the engine is highest.
 - (3) The highest compression ratio, at which the engine develops maximum power.
 - (4) The highest compression ratio at which maximum heat is obtained by combustion of the fuel.

किसी निश्चित इंजन समंजन एवं ईंधन हेतु उच्चतम उपयोगी सम्पीड़न अनुपात से क्या तात्पर्य है ?

- (1) वह क्रांतिक सम्पीड़न अनुपात जिसके ऊपर अयस्फोटन होता हो।
- (2) वह क्रांतिक सम्पीड़न अनुपात जिस पर इंजन की दक्षता अधिकतम होती हो।
- (3) वह उच्चतम सम्पीड़न अनुपात जिस पर इंजन अधिकतम शक्ति उत्पन्न करता हो।
- (4) यह उच्चतम सम्पीड़न अनुपात जिस पर ईंधन दहन से अधिकतम ऊष्मा प्राप्त होती हो।

50	The correct sequence of combustion stages in C.I. Engine is:	
•••	 Ignition delay period → Controlled combustion → Uncontrolled combustion → After burning 	
	 (2) Ignition delay period → After burning → Controlled combustion → Uncontrolled combustion 	
	 (3) Ignition delay period → Uncontrolled combustion → After burning → Controlled combustion 	
	(4) Ignition delay period → Uncontrolled combustion → Controlled combustion → After burning	
	C.I. इंजन में दहन चरणों का सही क्रम है :	
	(1) प्रज्वलन विलम्ब → नियंत्रित दहन → अनियंत्रित दहन → पश्व दहन	
	(2) प्रज्वलन विलम्ब $ ightarrow$ पश्च दहन $ ightarrow$ नियंत्रित दहन $ ightarrow$ अनियंत्रित दहन	
	(3) प्रज्वलन विलम्ब → अनियंत्रित दहन → पश्च दहन → नियंत्रित दहन	
	(4) प्रज्वलन विलम्ब → अनियंत्रित दहन → नियंत्रित दहन → पश्च दहन	
51	During the combustion process in compression-ignition engines, increasing which of the following parameter would increase the delay period?	
	(1) Compression ratio (2) Intake temperature	
	(3) Intake pressure (4) Injection advance angle	
	सम्पीड़न प्रज्वलन इंजनों में दहन प्रक्रिया के दौरान निम्न में से किस प्राचल को बढ़ाने से विलम्ब काल बढ़ेगा ?	

(1) सम्पीड़न अनुपात

(2) प्रवेश तापमान

(3) प्रवेश दाब

(4) अन्तःक्षेपण अग्रता कोण

- 52 By which one of the following action, diesel knock can not be prevented?
 - (1) by keeping the compression ratio high
 - (2) by increasing the intake air pressure
 - (3) by decreasing the temperature of the combustion chamber
 - (4) by increasing the injection pressure of diesel

निम्न में से किस क्रिया द्वारा डीज़ल अपस्फोटन को नहीं रोका जा सकता ?

- (1) अधिक सम्पीड़न अनुपात रख कर
- (2) प्रवेश वायु दाब बढ़ा कर
- (3) दहन कक्ष का तापमान घटा कर
- (4) डीज़ल का अन्तःक्षेपण दाब बढ़ा कर
- 53 In case of petrol engine, at starting:
 - (1) Weak fuel-air ratio is needed.
 - (2) Rich fuel-air ratio is needed.
 - (3) Chemically correct fuel-air ratio is needed.
 - (4) Any fuel-air ratio will do.

पेट्रोल इंजन के लिए, शुरूआत के समय :

- (1) क्षीण ईंधन-वायु अनुपात की आवश्यकता होती है।
- (2) प्रचुर ईंधन-वायु अनुपात की आवश्यकता होती है!
- (3) रासायनिक रूप से सही ईंधन-वायु अनुपात की आवश्यकता होती है।
- (4) कोई भी ईंधन-वायु अनुपात चलेगा।

- Which one of the following reason is not the reason of pre-ignition in Speak Ignition engines?
 - (1) Exhaust valve too hot
 - (2) Carbon deposition in combustion chamber
 - (3) Spark plug too hot
 - (4) Low compression ratio

निम्न में से कौनसा कारण स्पार्क प्रज्वलन इंजनों में पूर्व-प्रज्वलन का कारण नहीं है ?

- (1) अतितप्त निकास वाल्व
- (2) दहन कक्ष में कार्बन जमा होना
- (3) अतितप्त स्पार्क प्लग
- (4) निम्न सम्पीड़न अनुपात
- 55 For same compression ratio:
 - (1) Otto cycle is less efficient than diesel cycle.
 - (2) Otto cycle is more efficient than diesel cycle.
 - (3) Otto and diesel cycle are equally efficient.
 - (4) Efficiency depends upon working substance.

समान सम्पीड़न अनुपात के लिए :

- (1) ऑटो चक्र की दक्षता डीज़ल चक्र की तुलना में कम होती है।
- (2) ऑटो चक्र की दक्षता डीज़ल चक्र की तुलना में अधिक होती है।
- (3) ऑटो चक्र एवं डीज़ल चक्र की दक्षता बराबर होती है।
- (4) दक्षता कार्यकारी पदार्थ पर निर्भर करती है।

- 56 The components of secondary ignition circuit of battery ignition system are:
 - (1) Battery, contact breaker, distributor
 - (2) Contact breaker, condenser, distributor
 - (3) Secondary winding, contact breaker, condenser
 - (4) Secondary winding, distributor, spark plug
 - बैटरी प्रज्वलन तंत्र के द्वितीयक प्रज्वलन परिपथ के अवयव हैं :
 - (1) बैटरी, सम्पर्क विच्छेदक, वितरक
 - (2) सम्पर्क विच्छेदक, संधारित्र, वितरक
 - (3) द्वितीयक कुण्डली, सम्पर्क विच्छेदक, संधारित्र
 - (4) द्वितीयक कुण्डली, वितरक, स्पार्क प्लग
- 57 The components of primary ignition circuit of battery ignition system are:
 - (1) Contact breaker, Condenser, Distributor cap
 - (2) Contact breaker, Ignition coil, Spark plug
 - (3) Contact breaker, Ignition switch, Condenser
 - (4) Contact breaker, Ignition switch, Rotor
 - बैटरी प्रज्वलन तंत्र के प्राथमिक प्रज्वलन परिपथ के अवयव है
 - (1) सम्पर्क विच्छेदक, संघारित्र, वितरक ढक्कन
 - (2) सम्पर्क विच्छेदक, प्रज्वलन कुण्डली, स्पार्क प्लग
 - (3) सम्पर्क विच्छेदक, प्रज्वलन स्विच, संधारित्र
 - (4) सम्पर्क विच्छेदक, प्रज्वलन स्विच, रोटर

27_A]

58 Consider the following statements:

- (I) Heat dissipation path of hard spark plug is longer as compared to that of soft spark plug.
- (II) Hard spark plug is used in cold operating conditions
- (III) Soft spark plug is used in high speed engines.

Which of the above statements are correct?

- (1) (I) and (II)
- (2) (II) and (III)
- (3) (I) and (III)
- (4) (I), (II) and (III)

निम्न कथनों पर विचार कीजिए :

- (I) कठोर स्पार्क प्लग का ऊष्मा विक्षेप मार्ग मृदु स्पार्क प्लग की तुलना में लम्बा होता है।
- (II) कठोर स्पार्क प्लग को शीतल परिचालन परिस्थितियों में प्रयोग किया जाता है।
- (III) मृदु स्पार्क प्लग को उच्च चाल के इंजनों में प्रयोग किया जाता है। उपरोक्त में से कौन-कौन से कथन सही हैं ?
- (1) (I) एवं (II)

- (2) (II) एवं (III)
- (3) (I) एवं (III)
- (4) (I), (II) एवं (III)
- 59 The primary winding of ignition coil consist of:
 - (1) few turns of thin wire
 - (2) many turns of thin wire
 - (3) few turns of thick wire
 - (4) many turns of thick wire

प्रज्यलन कुण्डली की प्राथमिक वाइंडिंग में होती है :

- (1) पतले तार के कुछ घूम/लपेटे
- (2) पतले तार के बहुत से घूम/लपेटे
- (3) मोटे तार के कुछ घूम/लपेटे
- (4) मोटे तार के बहुत घूम/लपेटे

OU	How many power strokes per second shall take place in a four-stroke petrol engine rotating at 3000 r.p.m.?
	(1) 1500 (2) 25
	(3) 50 (4) 100
	3000 r.p.m. पर घूर्णनशील एक चतुः स्ट्रोक पेट्रोल इंजन में प्रति सेकण्ड कितने शक्ति
	स्ट्रोक होंगे ?
	(1) 1500 (2) 25
	(3) *50 (4) 100 •
61	The basic requirement of a good combustion chamber is:
	(1) No turbulence
	(2) Low compression ratio
	(3) High power output and high thermal efficiency
	(4) Low volumetric efficiency
	एक अच्छे दहन कक्ष की मुख्य आवश्यकता है :
	(1) कोई विक्षोभ नहीं
	(2) न्यून सम्पीड़न अनुपात
	(3) उच्च शक्ति निर्गम एवं उच्च तापीय दक्षता
	(4) न्यून आयतनिक दक्षता
62	Which one of the following statement is the most appropriate in reference
-	to the "Surface - Volume Ratio" of S.I. Engine combustion chambers ?
	(I) It should be small
	(2) It should be large
	(3) It should be small in the End gas region and large in rest of
	the region (4) It should be large in the End gas region and small in rest of
	(4) It should be large in the End gas region and small in rest of the region.
	S.I. इंजन दहन कक्षों के ''सतह-आयतन अनुपात'' के संदर्भ में निम्न में से कौनसा
	एक कथन सबसे अधिक उपयुक्त है ?
-	(1) यह कम होना चाहिए।
	(2) यह अधिक होना चाहिए।
٠.	The state of the s
	(4) यह अंतिम सिरा गैस क्षेत्र में अधिक तथा शेष क्षेत्र में कम होना चाहिए।
27_A	[Contd

- 63 Consider the following statements regarding the C.I. engine combustion chambers:
 - (I) Only partial combustion of fuel takes place in pre-combustion chambers.
 - (II) In swirl-combustion chamber, swirl is generated by directing the flow of air during it's entry to the cylinder.
 - (III) In swirl-combustion chamber, the swirl is proportional to the engine speed.

Select the correct option for True statements from the above :

- (1) (I) and (II)
- (2) (II) and (III)
- (3) (I) and (III)
- (4) (I), (II) and (III)
- C.I. इंजन दहन कक्षों के सम्बंध में निम्न कथनों पर विचार कीजिए :
- पूर्व-दहन कक्ष में ईंधन का केवल आंशिक दहन ही होता है।
- (II) सुभँवर-दहन कक्ष में सिलेण्डर में प्रवेश के समय वायु के प्रवाह को निर्देशित कर भँवर उत्पन्न किया जाता है।
- (III) सुभँवर-दहन कक्ष में भँवर, इंजन चाल के समानुपाती होता है। जपरोक्त में से सत्य कथनों हेतु सही विकल्प चुनिये :
- (1) (I) एवं (II)

- (2) (II) एवं (III)
- (3) (I) एवं (III)
- (4) (I), (II) एवं (III)
- 64 In open-combustion chamber of a diesel engine:
 - (1) Fuel injected into a separate turbulence chamber.
 - (2) Fuel injected in cavity provided at the top of piston.
 - (3) Partial combustion of fuel before main combustion chamber.
 - (4) Combustion of fuel takes place outside the cylinder. डीज़ल इंजन के खुला दहन कक्ष में :
 - (1) एक अलग विक्षुड्य कक्ष में ईंधन अन्तःक्षेपित करते है।
 - (2) पिस्टन के शीर्ष पर गढ्ढे में ईंधन अन्तःक्षेपित करते है।
 - (3) मुख्य दहन कक्ष से पूर्व ईंधन का आंशिक दहन होता है।
 - (4) ईंधन का दहन सिलेण्डर के बाहर होता है।

65 .	Most	suitable combustion chamber type for multi fuel capability is:				
	(1)	Open combustion chamber				
	(2)	Bath tub type combustion chamber				
	(3)	M-combustion chamber				
	(4)	Pre-combustion chamber				
	बहु ईं	धन क्षमता के लिए सर्वाधिक उपयुक्त दहन कक्ष का प्रकार है :				
	(1)	खुला दहन कक्ष (2) बाथैं-टब प्रकार का दहन कक्ष				
	(3)	M-दहन कक्ष (4) पूर्व-दहन कक्ष				
66	The p	parameter to be kept constant during Morse test is:				
•	(1)	Load on the engine				
	(2)	Speed of the engine				
	(3)	Brake power of the engine				
	(4)	Temperature of exhaust gases				
	मोर्स प	ारीक्षण के दौरान स्थिर रखा जाने वाला प्राचल है :				
	(1)	इंजन पर भार (2) इंजन की चाल				
	(3)	इंजन की ब्रेक शक्ति (4) निकास गैसों का तापमान				
67		is varied to keep the arm horizontal, after initial adjustment, while uring the brake power of engine by Proney Brake dynamometer?				
	(1)	Weights hanged on the arm				
	(2) Position of weight hanged on the arm					
	(3) Speed of the engine					
	(4) Quantity of fuel supplied to the engine					
	_	ब्रेक शक्तिमापित्र द्वारा इंजन की ब्रेक शक्ति ज्ञात करते समय, प्रारंभिक समंजन चात्, भुजा को क्षैतिज रखने के लिए क्या परिवर्तित किया जाता है ?				
	(1)	भुजा पर लटकाए गए भार				
	(2)	भुजा पर लटकाए गए भार की स्थिति				
	(3)	इंजन की चाल				
	(4)	इंजन को प्रदान की गई ईंधन की मात्रा				
27_A	1	29 [Contd				

****	(1)	Low speed engine	(2)	High power engine
		High speed engine	(4)	Wankle rotary engine
		इंजनों में से किसकी ब्रेक शक्ति किया जाता है ?	त माप	ने के लिए प्रायः प्रॉनी ब्रेक शक्तिमापित्र
*:::::	(1)	निम्न चाल इंज्न	(2)	उच्च शक्ति इंजन
	(3)	उच्च चाल इंजन	(4)	वांकल घूर्णन इंजन
69	If			
	p _m =	= mean effective pressure		
	L =	Length of stroke		
	N =	Engine speed (revolutions	per se	econd)
	A =	Bore area		
	The	indicated power of four str	oke e	engine will be:
	(1)	$p_{m}\cdot L\cdot A\cdot N$	(2)	$p_{\rm m}\cdot L\cdot A\cdot \frac{N}{4}$
		Maria de la companya		N
	(3)	2p _m ·L·A·N	(4)	$p_{m}\cdot L\cdot A\cdot \frac{N}{2}$
	यदि	• .		
	p _m =	= माध्य प्रभावी दाब		
	L =	स्ट्रोक की लम्बाई		
	N =	इंजन चाल (चक्र प्रति सेकण्ड)		
	A =	बोर क्षेत्रफल		
	चतुःस	ट्रोक इंजन की सूचित शक्ति हो	गी :	
	(4)			_ <i>N</i>
	(1)	p _m ·L·A·N	(2)	$p_{\rm m} L A \frac{N}{4}$
. •	(3)	2p _m ·L·A·N	(4)	$p_{\rm m} \cdot L \cdot A \cdot \frac{N}{2}$
٠.		•		-

27_A]

[Contd...

68 For which of the following engines a Proney brake dynamometer is

generally used to measure the brake power?

70	If the bore diameter, stroke length and compression ratio of a single cylinder engine are 7 cm, 8 cm and 8 respectively, what will be it's clearance volume?
	(1) 308 cm^3 (2) 38.5 cm^3
	(3) 44 cm^3 (4) 50.2 cm^3
	यदि एक एकल सिलेण्डर इंजन का बोर व्यास, स्ट्रोक लम्बाई एवं सम्पीड़न अनुपात
	क्रमशः 7 सेमी, 8 सेमी एवं 8 हों, तो इसका अवकाश आयतन क्या होगा ?
	(1) 308 घन सेमी (2) 38.5 घन सेमी
	(3) 44 घन सेमी (4) 50.2 घन सेमी
71	Following data of a four cylinder petrol engine are given:
	Brake Power = 40 kW,
	Fuel consumption = 0.2 kg/min
	Calorific value of fuel = 46000 kJ/kg,
	Heat in cooling water = 1600 kJ/min
	What will be the combined heat losses in exhaust gases, radiation etc.?
	(1) 5200 kJ/min (2) 5680 kJ/min
	(3) 5040 kJ/min (4) 3600 kJ/min
	एक चार सिलेण्डर पेट्रोल इंजन के निम्न आँकड़े दिये गए हैं :
	ब्रेक शक्ति = 40 किलोवाट
	ईंधन खपत = 0.2 किग्रा/मिनट
	ईंधन का ऊष्मीय मान = 46000 किलोजूल/किग्रा
	शीतल जल में ऊष्मा = 1600 किलोजूल/मिनट
	निष्कासित गैसों, विकिरण आदि में संयुक्त रूप से ऊष्मा हानि क्या होगी ?
	(1) 5200 किलोजूल/मिनट (2) 5680 किलोजूल/मिनट
	(3) 5040 किलोजूल/मिनट (4) 3600 किलोजूल/मिनट

	•		
	70 Which are of the following to	is the appropriate acquiring for the piratendard	
		is the correct sequence for the air-standard ower cycles at a definite compression ratio?	
			•
	(1) $\eta_{otto} > \eta_{diesel} > \eta_{dual}$	(2) $\eta_{otto} > \eta_{dual} > \eta_{diesel}$	
·	(3) $\eta_{diesel} > \eta_{otto} > \eta_{dual}$	(4) $\eta_{dual} > \eta_{otto} > \eta_{diesel}$	
	एक निश्चित सम्पीड़न अनुपात पर	विभिन्न गैस शक्ति चक्रों की वृायुमानक दक्षताओं	
	हेतु निम्न में से सही क्रम कौनस	ा है ?	
	(1) $\eta_{$	(2) $\eta_{\text{ऑटो}} > \eta_{\frac{2}{6}\pi} > \eta_{\frac{2}{6}\eta \pi}$	
	(3) $\eta_{ \equiv sloring} > \eta_{ \equiv trial } > \eta_{ \equiv $	(4) $\eta_{\frac{2}{6}\pi} > \eta_{\widetilde{\mathrm{Micl}}} > \eta_{\widetilde{\mathrm{sl}}_{\overline{\mathrm{vle}}}}$	
	73 Select the correct option for of an engine:	increasing order of the following efficiencies	
	(I) Brake thermal efficience	y	
	(II) Air standard efficiency		
	(III) Indicated thermal effici	ency	à
	The options are as follows :		:
	(1) (I), (II), (III)	(2) (I), (III), (II)	
			· ,
	(3) (II), (III), (I)	(4) (III), (I), (II)	
	एक इंजन की निम्न दक्षताओं के	बढ़ते हुए क्रम हेतु सही विकल्प चुनिए :	٠.
	(I) ब्रेक तापीय दक्षता		
	(II) वायु मानक दक्षता		
	(III) सूचित तापीय दक्षता		
	विकल्प निम्नानुसार हैं :		
		(2) (II) (III)	
	(1) (I), (II), (III)	(2) (I), (III), (II)	
	(3) (II), (III), (I)	(4) (III), (I), (II)	
	27 <u>*</u> A]	32 [Contd	
· .			
			·.

	(1)	Indicated power	(2)	Brake power
	(3)	Friction power	(4)	Thermal power
	इंजन	के सिलेण्डरों में उत्पन्न शक्ति	न कहला	ती है:
	(1)	सूचित शक्ति	(2)	ब्रेक शक्ति
	(3)	घर्षण शक्ति	(4)	तापीय शक्ति
75	Unit	of brake specific fuel co	onsump	tion is :
	(1)	kg-hr-kW	(2)	kg-hr/kW
	(3)	kW-hr/kg	(4)	kg/kW-hr
	ब्रेक	विशिष्ट ईंधन खपत की इकाई	है :	
	(1)	किग्रा–घण्टा–किलोवाट	(2)	किग्रा─घण्टा/किलोवाट
	(3)	किलोवाट-घण्टा/किग्रा	(4)	किग्रा/किलोवाट-घण्टा
			·	
76	1200	C.C., 4-Cylinder engine	has :	
	(1)	Swept volume of each c	ylinder	= 300 C.C.
	(2)	Total volume of each cy	linder =	= 300 C.C.
	(3)	Total volume of each cy	linder =	= 1200 C.C.
	(4)	Swept volume of each c	ylinder	= 1200 C.C.
	1200) सी.सी., 4 सिलेण्डर इंजन मे	i होता	है :
	(1)	प्रत्येक सिलेण्डर का सर्पित अ	गयतन :	= 300 सी.सी.
	(2)	प्रत्येक सिलेण्डर का कुल आ	यतन =	300 सी.सी.
	(3)	प्रत्येक सिलेण्डर का कुल आ	यतन =	1200 सी.सी.
	(4)	प्रत्येक सिलेण्डर का सर्पित उ	गयतन :	= 1200 सी.सी.

74 Power developed inside the engine cylinders is called :

- 77 Indicated mean effective pressure is :
 - (1) Area of indicator diagram×spring scale
 Length of base of indicator diagram
 - (2) Area of indicator diagram
 Length of base of indicator diagram × spring scale
 - (3) Length of base of indicator diagram × spring scale
 Area of indicator diagram
 - (4) Area of indicator diagram

 Length of base of indicator diagram

सूचित माध्य प्रभावी दाब होता है :

- (1) सूचकआरेख का क्षेत्रफल × कमानी संख्या सूचकआरेख केआधार की लम्बाई
- (2) स्चक आरेख का क्षेत्रफल स्चक आरेख के आधार की लम्बाई × कमानी संख्या
- (3) सूचक आरेख के आधार की लंबाई × कमानी संख्या सूचक आरेख का क्षेत्रफल
- (4) सूचक आरेख का क्षेत्रफल सूचक आरेख के आधार की लम्बाई

78	Which of the following are the reasons of very black smoke in diesel engine?
	(I) Using fuel of low cetane number
	(II) Overloading of the engine
	(III) Fuel-Air mixture being rich
	The options are as follows:
	(1) (I) and (II) (2) (II) and (III)
	(3) (I) and (III) (4) (I), (II) and (III)
	निम्न में से कौनसे डीज़ल इंजन में अत्यधिक काले धुएँ के कारण हैं ?
	(I) कम सीटेन अंक का ईंधन प्रयोग करना
	(II) इंजन का अतिभारण
	(III) ईंधन-वायु मिश्रण का प्रचुर होना
	विकल्प निम्नानुसार हैं :
	(1) (I) एवं (II) (2) (II) एवं (III)
	(3) (I) एवं (III) (4) (I), (II) एवं (III)
19	Presently the Emission Standards in force for 4-wheel petrol vehicles in Rajasthan are:
	(1) Bharat Stage - I (2) Bharat Stage - II
	(3) Bharat Stage - III (4) Bharat Stage - IV
	वर्तमान में 4-पहिया पेट्रोल वाहनों के लिए राजस्थान में लागू उत्सर्जन मानक है:
	(1) भारत स्टेज – I (2) भारत स्टेज – II
	(3) भारत स्टेज – III (4) भारत स्टेज – IV
7_A	35 [Contd

80 Match List - A with List - B and select the correct option :

List - A (Measurement)

List - B (Method)

(I) Smoke

(P) Air Box

(II) Exhaust Emission

(Q) Burette

(III) Fuel consumption

(R) Bosch Smoke meter

(IV) Air consumption

(S) Spectroscopic analysis

-Options are as follows:

- (1) (I)-(R), (II)-(S), (III)-(Q), (IV)-(P)
- (2) (I)-(R), (II)-(P), (III)-(S), (IV)-(Q)
- (3) (I)-(S), (II)-(P), (III)-(Q), (IV)-(R)
- (4) (I)-(P), (II)-(S), (III)-(R), (IV)-(Q)

सूची-A का सूची-B के साथ मिलान कीजिए एवं सही विकल्प चुनिए:

सूची-А (मापन)

सूची-В (विधि)

(I) धुँआ / स्मोक

(P) वायु बाक्स

(II) निकास उत्सर्जन

(Q) ब्यूरेट

(III) ईंधन खपत

(R) बॉश स्मोकमीटर

(IV) वायु खपत

(S) स्पेक्ट्रोस्कोपिक विश्लेषण

विकल्प निम्नानुसार है :

- (1) (I)-(R), (II)-(S), (III)-(Q), (IV)-(P)
- (2) (I)-(R), (II)-(P), (III)-(S), (IV)-(Q)
- (3) (I)-(S), (II)-(P), (III)-(Q), (IV)-(R)
- (4) (I)-(P), (II)-(S), (III)-(R), (IV)-(Q)

81	In which one of the following smoke meter, the sample of emission gas is passed through a tube, which has a light source at one end and photocells at the other end?		
	(1) Bosch smoke meter (2) Hartridge smoke meter		
	(3) Van Brand smoke meter (4) Gas Analyser		
	निम्न में से किस धुँआ मापित्र में उत्सर्जन गैस के नमूने को एक ऐसी ट्यूब में से गुजारा जाता है, जिसके एक सिरे पर प्रकाश—स्रोत व दूसरे सिरे पर फोटो—सेल तगे होते हैं ?		
	(1) बॉश धुँआ मापित्र (2) हाट्रिज धुँआ मापित्र		
	(3) वैन ब्रांड धुँआ मापित्र (4) गैस विश्लेषक		
82	What is the correct sequence of power transmission in front engine (transverse mounted) front wheel drive vehicle?		
	(1) Clutch, gear box, differential, drive-axle		
	(2) Clutch, gear box, propeller shaft, differential		
	(3) Drive-axle, clutch, gear box, wheels		
	(4) Clutch gear box, drive-axle, differential		
	अग्र इंजन (आड़ा स्थापित) अग्र पहिया चालन वाहन में शक्ति पारेषण का सही क्रम क्या है ?		
	(1) क्लच, गियर बाक्स, डिफ्रेंशियल, ड्राइव-एक्सल		
	(2) क्लच, गियर बाक्स, प्रोपेलर शाफ्ट, डिफ्रेंशियल		
•	(3) ड्राइव-एक्सल, क्लच, गियर बाक्स, पहिए		
	(4) क्लच, गियर बाक्स, ड्राइवएक्सल, डिफ्रेंशियल		
83	When both the rear wheels of a rear wheel drive vehicle are jacked up and gears are in neutral position, turning one rear wheel forward will cause the other rear wheel to:		
	(1) turn forward (2) turn backward		
	(3) make turn in any direction (4) remain stationary		
	जब एक पश्च पहिया चालन वाहन के पिछले दोनों पहियों को जैक द्वारा उठाया गया हो तथा गियर न्यूट्रल अवस्था में हों, तो पिछले एक पहिए को अग्र दिशा में घुमाने पर पिछला दूसरा पहिया —		
	(1) अग्र दिशा में घूमेगा (2) पश्च दिशा में घूमेगा		
	(3) किसी भी दिशा में घूमेगा (4) स्थिर रहेगा		
27_A			

27 _A	4]	38		[Contd
	(4)	पश्च इंजन अग्र पहिया चालन		
	(3)	पश्च इंजन पश्च पहिया चालन	٠.	
	(2)	अग्र इंजन पश्च पहिया चालन		·
	(1)	अग्र इंजन अग्र पहिया चालन		
	''टाट	ा नैनो'' कार है :		•
	(4)	Rear engine Front wheel driv	re .	
	(3)	Rear engine Rear wheel drive	e	
	(2)	Front engine Rear wheel driv	⁄e	
	(1)	Front engine Front wheel dri	ve	
86	"Tata	a Nano" car is a :		
	(3)	पूर्ण – प्लवमान	(4)	खुला एक्सल
	(1)	अर्द्ध प्लवमान	(2)	तीन चौथाई – प्लवमान
	भारी	वाहनों में किस प्रकार का पिछला	धुरा :	प्रयोग किया जाता है ?
	(3)	Fully - floating	(4)	Open axle
	(1)	Semi - floating	(2)	Three quarter - floating
85	Whic	ch type of rear axle is used in	n heav	vy vehicles ?
	(-)	· ·	()	
	(3)			6×4
	(1)	·	(2)	
		में से किस वाहन में ट्रांसफर-केस	• •	
	(1)	•	(4)	
	(1)	4×2	(2)	4×4

In which of the following vehicle, transfer-case is a must ?

8 7	"When a vehicle is negotiating a turn, inside the differential (with two planet-gears),,"
	Select the correct option for the blank space above :
	(1) the relative motion of the two Sun-gears is zero
	(2) Sun-gears and Crown-wheel move in the directions opposite to each other
	(3) the relative motion of Planet-gears and Sun-gears is zero
	(4) both the Planet-gears move in the directions opposite to each other
	''जब एक वाहन किसी मोड़ पर गति करता है तो डिफ्रेंशियल (दो प्लेनेट-गियरों वाले) के अंदर ।''
	उपरोक्त रिक्त स्थान हेतु सही विकल्प चुनिए :
	(1) दोनों सन-गियरों की सापेक्ष गति शून्य होती है
	(2) सन-गियर व क्राऊन-व्हील एक दूसरे के विपरीत दिशा में गति करते हैं
	(3) प्लेनेट गियरों व सन-गियरों की सापेक्ष गति शून्य होती है
	(4) दोनों प्लेनेट-गियर एक दूसरे के विपरीत दिशा में गति करते हैं
88	What is the main advantage of inverted tooth chain?
	(1) Noise less running (2) Low production cost
	(3) More strength (4) Lubrication not required
	उल्टे दाँत वाली चेन का मुख्य लाभ क्या है ?
	(1) शोर रहित प्रचालन (2) कम उत्पादन लागत
	(3) अधिक सामर्थ्य (4) स्नेहन आवश्यक नहीं
89	Two shafts A and B are made of same material. Diameter of shaft B is half the diameter of shaft A. Torsional strength of shaft A, as compared to shaft B, will be:
	(1) 2 times (2) 4 times
·	(3) 1/8 times (4) 8 times
	दो शाफ्ट A व B समान पदार्थ से निर्मित हैं। शाफ्ट B का व्यास शाफ्ट A के व्यास का आधा है। शाफ्ट B की तुलना में, शाफ्ट A की एंठ सामर्थ्य होगी :
٠.	(1) 2 गुना (2) 4 गुना
\$. 	(3) 1/8 गुना (4) 8 गुना
27_A	[Contd

•	syste	an ?		
	(1)	Volume	(2)	Mass
	(3)	Energy	(4)	Specific volume
	निम्न	में से कौनसा एक ऊष्पागतिक तंत्र	त्र का	मात्रा-निरपेक्ष गुणधर्म है ?
	(1)	आयतन	(2)	द्रव्यमान
	(3)	ক র্লা	(4)	विशिष्ट आयतन
91	The	vehicle ride will be comfortate	ole, if	:
	(1)	Sprung weight is kept minim	ıum	•
	(2)	Unsprung weight is kept min	imun	· ·
	(3)	Gross vehicle weight is kept	mini	mum
	(4)	Unsprung weight is kept ma	ximun	n .
	वाहन	यात्रा आरामदायक होगी, यदि :		
	(1)	स्प्रंग भार न्यूनतम रखा जाए		•
	(2)	अनस्प्रंग भार न्यूनतम रखा जाए		
	(3)	समग्र वाहन भार न्यूनतम रखा ज	गएं	4
	(4)	अनस्प्रंग भार अधिकतम रखा जा	ए	
92		n which type of suspension s partment is maximum?	ystem	, the space available in engine
	(1)	Double wishbone type	(2)	Mc Pherson's strut type
	(3)	Rigid axle type	(4)	Vertical guide type
	किस	प्रकार की सस्पेंशन प्रणाली के स	थ इंच	गन कक्ष में उपलब्ध स्थान अधिकतम
	होता	₹ ?		
	(1)	दोहरी विशबोन प्रकार	(2)	मैक फर्सन स्ट्रट प्रकार
	(3)	दृढ़ एक्सल प्रकार	(4)	उर्ध्वाधर गाइड प्रकार
2 7_ <i>A</i>	Aj -	40	٠.	[Contd
		•		

Which one of the following is an intensive property of a thermodynamic

93	Which one of the following clutch	is generally used in motor-cycles?	
	(1) Single disc dry type	(2) Multi disc dry type	
	(3) Single disc wet type	(4) Multi disc wet type	

(1) एकल चकती शुष्क प्रकार (2) बहुचकती शुष्क प्रकार

मोटर-साइकिलों में प्रायः निम्न में से कौनसा क्लच प्रयुक्त होता है ?

- (3) एकल चकती आई प्रकार (4) बहुचकती आई प्रकार
- 94 Out of the following, which action takes place in the clutch, when the clutch pedal is depressed?
 - (1) Pressure plate comes to rest
 - (2) Clutch plate moves towards the fly-wheel
 - (3) Pressure plate moves away from the fly-wheel
 - (4) Clutch plate slows down to the speed of the fly-wheel जब क्लच पेडल दबाया जाता है तो क्लच में निम्न में से कौनसी क्रिया घटित होती है ?
 - (1) दाब प्लेट स्थिर हो जाती है
 - (2) क्लच प्लेट फ्लाई व्हील की ओर खिसकती है
 - (3) दाब प्लेट फ्लाई व्हील से दूर खिसक जाती है
 - (4) क्लच प्लेट फ्लाई व्हील की गति तक धीमी हो जाती है

95 Included angle is equal to:

- (1) Camber + Caster
- (2) Camber + Steering axis inclination
- (3) Caster + Steering axis inclination
- (4) Camber + Caster + Steering axis inclination सम्मिलित कोण बराबर होता है :
- (1) केम्बर + केस्टर
- (2) केम्बर + स्टीयरिंग अक्ष झुकाव
- (3) केस्टर + स्टीयरिंग अक्ष झुकाव
- (4) केम्बर + केस्टर + स्टीयरिंग अक्ष झुकाव

96	Steer	ing mechanism of cars should	be:	
	(i)	Reversible	(2)	Semi - reversible
	(3)	100% irreversible	(4)	Directionally unstable
	कारों	की स्टीयरिंग यंत्रावली होनी चाहिए	:	
	(1)	प्रतिवर्तीय	(2)	अर्द्ध-प्रतिवर्तीय
	(3)	100% अप्रतिवर्तीय	(4)	दिशात्मक रूप से अस्थिर
97		e intersection point of included a		is located above the road surface,
-	(1)	toe-in	(2)	toe-out
	(3)	move straight	(4)	become unstable
	यदि	सम्मिलित कोण का प्रतिच्छेद बिंदु सङ्	क सत	ह के ऊपर स्थित हो, तो अगले पहियों
	की प्र	ावृत्ति होगी :		
	(1)	टो-इन की	(2)	टो—आऊट की
			(4)	अस्थिर होने की
98	Whi	ch one of the following pair i	s not	correctly matched ?
	(1)	Clutch - Diaphragm spring		. •
	(2)	Steering gear box - Rack an	d pin	ion
	(3)	Transmission gear box - Bev	el ge	ars
	(4)	Differential - Hypoid gear		
	निम्न	युग्मों में से कौनसा एक समुचित	प्रकार	से मिलान नहीं किया गया है ?
	(1)	क्लच – डायाफ्राम स्प्रिंग		
	(2)	स्टीयरिंग गियर बॉक्स - रैक व	पिनिय	ा
	(3)	पारेषण गियर बॉक्स - बेवेल गि	यर	
	(4)	डिफ्रेंशियल – हाइपॉइड गियर		

99	Con	sider the following statements:
	(1)	Double de-clutching is necessary while changing gears in synchromesh gear box.
	(II)	All the gears in constant - mesh gear box are of spur type.
	(m)	Maximum wear and tear takes place in sliding mesh gear box.
•	Selec	ct the correct option for the False statements from the above :
	(1)	(I) and (II) (2) (II) and (III)
	(3)	(I) and (III) (4) (I), (II) and (III)
	निम्न	कथनों पर विचार कीजिए :
	(I)	सिंक्रोमेश गियर बॉक्स में गियर बदलते समय डबल डी-क्लचिंग आवश्यक है।
	(II)	स्थिर – मेश गियर बॉक्स में सभी गियर स्पर प्रकार के होते हैं।
	(III)	सरकवें मेश गियर बॉक्स में टूट-फूट सबसे अधिक होती है।
	उपरो	क्त में से असत्य कथनों हेतु विकल्प चुनिए :
	(1)	(I) एवं (II) एवं (III)
٠	(3)	(I) एवं (III) (4) (I), (II) एवं (III)
100		th one of the following component is not mounted on the toplate'?
	(1)	Brake shoes (2) Wheel cylinder
	(3)	Adjuster (4) Master cylinder
	निम्न	में से कौनसा अवयव 'बैक प्लेट' पर नहीं लगाया जाता ?
	(1)	ब्रेक गुटके (2) व्हील सिलेण्डर
	(3)	समंजक (4) मास्टर सिलेण्डर
•		

101	Which one of the following is not air brakes?	a part	of the 'unloader valve' used in
	(1) Brake valve	(2)	Unloader plunger
	(3) Non-return valve	(4)	Governor valve
	निम्न में से कौनसा अवयव वायु ब्रेकों में भाग नहीं है ?	प्रयुक्त	होने वाले 'अनलोडर वाल्व' का एक
	(1) ब्रेक वाल्व	(2)	अनलोडर प्लंजर
	(3) नॉन-रिटर्न वाल्व	(4)	गवर्नर वाल्व
102	What is the main function of 'Ant	ti Bral	king system'?

- (1) To reduce the braking efficiency
- (2) To bring the wheels to rest as soon as brakes are applied
- (3) To prevent the wheels from skidding when the brakes are applied
- (4) To reduce the wear of the brake friction lining 'एंटी ब्रेकिंग प्रणाली' का मुख्य कार्य क्या है ?
- (1) ब्रेकिंग दक्षता को घटाना
- (2) ब्रेक लगाते ही तुरंत पहियों को स्थिर अवस्था में लाना
- (3) ब्रेक लगाने पर पहियों को फिसलने से बचाना
- (4) ब्रेक घर्षण लाइनिंग की घिसावट को कम करना
- 103 Number of positive plates in a cell of Lead-Acid battery is :
 - (1) One more than the number of negative plates
 - (2) One less than the number of negative plates
 - (3) Two more than the number of negative plates
 - (4) Two less than the number of negative plates सीसा-अम्ल बैटरी के एक सैल में धनात्मक प्लेटों की संख्या होती है :
 - (1) ऋणात्मक प्लेटों की संख्या से एक अधिक
 - (2) ऋणात्मक प्लेटों की संख्या से एक कम
 - (3) ऋणात्मक प्लेटों की संख्या से दो अधिक
 - (4) ऋणात्मक प्लेटों की संख्या से दो कम

104	The battery test which is similar t starting motor is:	o the	situation produced by the
	(1) Specific gravity test	(2)	Open voltage test
	(3) High discharge test	(4)	Cadmium test
	स्टार्टिंग मोटर के समान परिस्थिति उत्पन	न कर	ने वाली बैटरी जाँच है :
	(1) विशिष्ट घनत्व जाँच	(2)	खुली वोल्टता जाँच
	(3) उच्च डिस्चार्ज जाँच	(4)	कैडमियम जाँच
			•
105	How many diodes in all are used	in th	e alternator used in vehicles ?
	(1) 2	(2)	4
	(3) 6	(4)	8
	वाहनों में प्रयुक्त होने वाले अल्टरनेटर	में कुल	कितने डायोड प्रयोग किये जाते हैं?
	(1) 2	(2)	4
	(3) 6	(4)	8
106	Why 'Relay' is fitted in horn circu	iit ?	
	(1) To increase the sound intensi	ity of	horn
	(2) To protect the horn button		
	(3) To reduce the voltage in the	circu	it
	(4) To blow the horn intermitten		
	हॉर्न परिपथ में 'रिले' क्यों लगायी जार्त		?
	(1) हॉर्न आवाज की तीव्रता बढ़ाने के	तिए	
	(2) हॉर्न बटन के बचाव के लिए		
	(3) परिषय में वोल्टता घटाने के लिए		
 	(4) रूक रूक कर हॉर्न बजाने के लि	ए	

107 A bus can not move because two gears engaged simultaneously in the transmission gear box.

Most probably, the fault is in :

- (1) Gear selector mechanism
- (2) Gear Interlocking mechanism

(3) Synchronizer

(4) Reverse gear

एक बस के पारेषण गियर बॉक्स में एक साथ दो गियर एंगेज हो जाने के कारण बस नहीं चल सकती ।

सर्वाधिक संभाव्य दोष ही सकता है :

- (1) गियर चयन यंत्रावली में
- (2) गियर अन्तर्ग्रंथन यंत्रावली में

(3) सिक्रोनाइजर में

(4) रिवर्स गियर में

108 For regulation, an alternator have :

- (1) Current regulator and voltage regulator both
- (2) A current regulator and a cut-out relay
- (3) A voltage regulator and a cut-out relay
- (4) A voltage regulator only

एक अल्टरनेटर में नियमन हेतु होता है :

- (1) धारा नियामक और विभव नियामक दोनों
- (2) एक धारा नियामक और एक कट-आऊट रिले
- (3) एक विभव नियामक और एक कट-आऊट रिले
- (4) केवल एक विभव नियामक
- 109 When removing the battery from a negative earth return system vehicle, disconnect:
 - grounded terminal cable first
 - (2) positive terminal cable first
 - (3) both terminal cables together
 - (4) ignition coil terminal cable first

एक ऋणात्मक भू-योजित प्रणाली वाले वाहन में से जब बैटरी हटाई जाए, तो वियोजित करें :

- (1) भू-योजित टर्मिनल तार पहले
- (2) धनात्मक टर्मिनल तार पहले
- (3) दोनों टर्मिनल तार साथ में
- (4) प्रज्वलन कुण्डली की टर्भिनल तार पहले

110 Match List - A with List - B and select the correct option :

List - A (Electrical Device)

List - B (Electrical Symbol)

(a) Bulb

- (P)
- (b) Large capacitor
- (0) (

(c) Fuse

(R) #

(d) Earthing

(S) _____

Options are as follows:

- (1) (a)-(Q), (b)-(R), (c)-(S), (d)-(P)
- (2) (a)-(Q), (b)-(S), (c)-(R), (d)-(P)
- (3) (a)-(R), (b)-(P), (c)-(Q), (d)-(S)
- (4) (a)-(Q), (b)-(P), (c)-(R), (d)-(S)

सूची - A का सूची - B के साथ मिलान कीजिए एवं सही विकल्प चुनिए :

सूची - А (विद्युत युवित)

सूची - B (विद्युत प्रतीक)

(a) 'ৰল্ব

(P)

(b) विशाल संधारित्र

 \bigotimes

(c) फ्यूज़

(R)

(d) भूयोजन

(S)

विकल्प निम्नानुसार है :

- (1) (a)-(Q), (b)-(R), (c)-(S), (d)-(P)
- (2) (a)-(Q), (b)-(S), (c)-(R), (d)-(P)
- (3) (a)-(R), (b)-(P), (c)-(Q), (d)-(S)
- (4) (a)-(Q), (b)-(P), (c)-(R), (d)-(S)

111	Odometer is an instrument which measures			
	(1)	Fuel consumption	(2)	Pressure of lubricating oil
	(3)	Speed of the vehicle	(4)	Distance travelled by the vehicle
	ओडो	मीटर एक उपकरण है, जो मापता	है :	
	(1)	ईंघन खपत	(2)	स्नेहक तेल का दाब
	(3)	वाहन की चाल	(4)	वाहन द्वारा तय की गई दूरी
112	The	type of reflector used for aut	omob	ile head lamp is :
	(1)	Spherical	(2)	Parabolic
	(3)	Hyperbolic	(4)	Plain / flat
	ऑटो	मोबाइल हैंड लेम्प के लिए रिफलेक	टर /	परावर्तक का प्रकार होता है :
	(1)	गोलाकार	(2)	परवलयिक
	(3)	अतिपरवलियक	(4)	सादा / समतल
				·
113	Han	d brakes in cars are usually:		
	(1)	Mechanical brakes	(2)	Air brakes
	(3)	Hydraulic brakes	(4)	Vacuum brakes
	कारों	में हैण्ड ब्रेक्स सामान्यतः होते है	:	
	(1)	यांत्रिक ब्रेक्स	(2)	वायु ब्रेक्स
	(3)	द्रवीय ब्रेक्स	(4)	निर्वात ब्रेक्स

114	The rear suspension system of a tractor is:
•	(1) Leaf spring type
	(2) Coil spring type
	(3) Independent type
	(4) Not provided (No suspension system is used)
	एक ट्रेक्टर की पिछली सस्पेंशन प्रणाली होती है:
:	(1) लीफ स्प्रिंग प्रकार
	(2) कॉइल स्प्रिंग प्रकार
	(3) स्वतंत्र प्रकार
	(4) कोई निलम्बन प्रणाली प्रयोग नहीं होती
115	The electrolyte used in Lead-Acid battery is :
	(1) Sulphuric acid and lead
	(2) Distilled water and lead
	(3) Sulphuric acid and distilled water
	(4) Only distilled water
	सीसा-अम्ल बैटरी में प्रयुक्त इलेक्ट्रोलाइट होता है :
	(1) गंधक का अम्ल और सीसा
	(2) आसवित जल और सीसा
	(3) गंधक का अम्ल और आसवित जल
	(4) केवल आसवित जल
116	"Brake bleeding process removes from the hydraulic braking system".
	Correct option for the blank space above is:
	(1) Excess pressure (2) Air
	(3) Excess fluid (4) Vacuum
	''ब्रेक ब्लीडिंग प्रक्रम, द्रवीय ब्रेक प्रणाली में से को हटाता है।''
	उपरोक्त रिक्त स्थान हेतु सही विकल्प है :
• • •	(1) अधिक दाब (2) वायु
	(3) अधिक द्रव (4) निर्वात
27_/	A] 49 [Contd
5	

117 :	The	most popular steering gear bo	x for	cars today, is:
	(1)	Worm and Nut type	(2)	Cam and Lever type
	(3)	Worm and Wheel type	(4)	Rack and Pinion type
	आजव	कल कारों में सर्वाधिक प्रचलित स्टी	यरिंग	गियर बॉक्स है:
	(1)	चर्म एवं नट प्रकार	(2)	कैम एवं लीवर प्रकार
	(3)	वर्म एवं व्हील प्रकार	(4)	रैक एवं पिनियन प्रकार
118	Cons	sider the following statements	:	
	(I) As compared to manual steering, the steering effort applied by driver, is more in power steering.			the steering effort applied by the
	(II)	As compared to manual steer power steering.	ing, t	he steering gear ratio is more in
	Select the correct option for the above statements:			
	(1)	(I) and (II) both are true	(2)	(I) and (II) both are false
	(3)	(I) is true, (II) is false	(4)	(I) is false, (II) is true
	निम्न	कथनों पर विचार कीजिए :		
	(I)	मैनुअल स्टीयरिंग की तुलना में, स्टीयरिंग आयास अधिक होता है		स्टीयरिंग में चालक द्वारा लगाया गया
	(II)	मैनुअल स्टीयरिंग की तुलना में, शवि होता है।	स्त स्टी	यरिंग में स्टीयरिंग गियर अनुपात अधिक
	उपरो	ोक्त कथनों हेतु सही विकल्प चुनिए	; :	
	(1)	(I) एवं (II) दोनों सत्य हैं	(2)	(I) एवं (II) दोनों असत्य हैं
	(3)	(I) सत्य है, (II) असत्य है	(4)	(I) असत्य है, (II) सत्य है
25				

- 119 A centrifugal pump will start delivering water only when the pressure rise in the impeller is equal to or greater than the:
 - (1) Kinetic head

(2) Manometric head

(3) Static head

(4) Velocity head

एक अपकेन्द्री पम्प केवल तब ही पानी प्रदान करना प्रारंभ करता है, जब प्रणोदक में दाब वृद्धि बराबर या अधिक हो :

(1) गतिज शीर्ष से

- (2) दाबांतरीय शीर्ष से
- (3) स्थैतिक शीर्ष से

(4) वेग शीर्ष से

120 During throttling process:

- (1) Pressure does not change
- (2) Enthalpy does not change
- (3) Internal energy does not change
- (4) Entropy does not change

थ्रोटलिंग प्रक्रम के दौरान :

- (1) दाब परिवर्तित नहीं होता
- (2) एन्याल्पी परिवर्तित नहीं होती
- (3) आंतरिक ऊर्जा परिवर्तित नहीं होती
- (4) एन्ट्रॉपी परिवर्तित नहीं होती
- 121 Which one of the following statement is a False statement?
 - (1) Wheel track can not be changed by using a reversible wheel.
 - (2) In spoked wheels, the spokes bear all type of loads in tension only.
 - (3) Tubeless tyres can not be used on spoked wheels.
 - (4) In zero-set wheel, the middle plane of rim is co-planer with the mounting face of the brake drum.

निम्न में से कौनसा एक कथन असत्य है ?

- (1) प्रतिवर्ती पहिए का प्रयोग कर व्हील-ट्रैक को परिवर्तित नहीं किया जा सकता।
- (2) तीलियों/स्पोक वाले पहियों में तीलियाँ/स्पोक सभी प्रकार के भार केवल तनाव में ही वहन करती हैं।
- (3) तीलियों/स्पोक वाले पहियों पर ट्यूब रहित टायरों का प्रयोग नहीं किया जा सकता।
- (4) शून्य सैट पहिए में रिम का मध्य तल, ब्रेक ड्रम के संलग्न फलक के सम्पाती होता है।

	(1)	Camber	(2)	Caster
	(3)	Toe-in	(4)	Steering axis inclination
	मारूति	 800 कार का पहिया संरेखन 	करते	समय क्या समंजित किया जाता है ?
	(1)	केम्बर	(2)	केस्टर
	(3)	टो–इन	(4)	स्टीयरिंग अक्ष झुकाव
				•
123	Wha	t is represented by the number	80	in "155/80-R-14" ?
	(1)	Percentage ratio of tyre section	on he	ight and width
	(2)	Percentage ratio of tyre section	on wi	dth and height
	(3)	Outer diameter of tyre (in ce	ntime	ter)
	(4)	Percentage ratio of rim width	and	tyre section width
	"155/80-R-14" में संख्या 80 के द्वारा क्या निरूपित किया गया है ?			
	(1)	टायर परिच्छेद की ऊँचाई एवं चौ	ड़ाई व	ग प्रतिशत अनुपात
	(2)	टायर परिच्छेद की चौड़ाई एवं ऊँ	घाई द	ज प्रतिशत अनुपात
	(3)	टायर का बाह्य व्यास (सेंटीमीटर	में)	
	(4)	रिम की चौड़ाई एवं टायर परिच्छे	द की	चौड़ाई का प्रतिशत अनुपात
124	A ty	re is designated as "9.00-20-12	2 PR'	'. The rim diameter will be :
	(1)	9 inch	(2)	12 inch
	(3)	20 inch	(4)	38 inch
	एक	टायर "9.00-20-12 PR" पदनामित	है। ई	रेम व्यास होगा :
	(1)	9 इंच	(2)	12 इंच
	(3)	20 इंच	(4)	38 इंच
27_A	k]	52		[Contd

122 What is adjusted while doing the wheel alignment of Maruti 800 car ?

125	What is the correct sequence of different steps of cold tyre retreading?
•	(1) Buffing → Inspection of casing → Tread mounting → Thermal curing
	(2) Buffing → Tread mounting → Thermal curing → Inspection of casing
4.	(3) Inspection of casing → Buffing → Tread mounting → Thermal curing
	(4) Inspection of casing \rightarrow Tread mounting \rightarrow Buffing \rightarrow Thermal curing
	शीत टायर रिट्रेडिंग के विभिन्न चरणों का सही क्रम क्या है ?
	(1) बिफंग → केसिंग की जाँच → ट्रेड चढ़ाना → ताप उपचार
	(2) बिफंग → ट्रेड चढ़ाना → ताप उपचार → केसिंग की जाँच
	(3) केसिंग की जाँच → बिफेंग → ट्रेंड चढ़ाना → ताप उपचार
	(4) केसिंग की जाँच → ट्रेंड चढ़ाना → बिंफंग → ताप उपचार
126	The purpose of tyre rotation in vehicles, is:
	(1) Better ride (2) Avoid ply separation
	(3) Equalize wear (4) Direction stability
	वाहनों में टायरों के स्थान बदलने का उद्देश्य है :
	(1) अच्छी सवारी (2) प्लाई पृथक्करण रोकना

(3) एकसमान घिसाई

(4) दिशा स्थायित्व

127		ider the following statements recoss ply tyres:	gard	ing radial ply tyres as compared
	(I)	Cornering force as well as self ply tyres.	right	tning torque are higher for radial
•	(II)	While taking turns, a radial ty road from one side.	re h	as more tendency to lift off the
	(III)	We get uncomfortable ride at	low	speeds with radial ply tyres.
	Selec	t the correct option for the al	bove	statements :
	(1)	(I) and (II) are true	(2)	(II) and (III) are true
	(3)	(I) and (III) are true	(4)	(I), (II) and (III) are true
		प्लाई टायरों की तुलना में रेडियल कीजिए :	प्लाई	टायरों से सम्बंधित निम्न कथनों पर
	(1)	रेडियल प्लाई टायरों में कॉर्निरेंग व होते हैं।	बल त	था स्वतः स्थिरक एँठ दोनों अधिक
	(II)	मोड़ काटते समय, रेडियल प्लाई ट की प्रवृत्ति अधिक होती है।	ायरों	में सड़क पर से एक ओर से उठने
	(III)	रेडियल प्लाई टायरों से कम गतियो	ं पर	हमें असुविधाजनक सवारी मिलती है।
	उपरोव	स्त कथनों हेतु सही विकल्प चुनिये	:	
	(1)	(I) एवं (II) सत्य हैं	(2)	(II) एवं (III) सत्य हैं
	(3)	(I) एवं (III) सत्य हैं	(4)	(I), (II) एवं (III) सत्य हैं
128	Cons	ider the following statements:	:	
	(I)	An over inflated tyre wears the	e mos	st at the centre part of the tread.
	(II)	An under inflated tyre wear the	he m	ost near the edges of the tread.
	Selec	t the correct option for the al	bove	statements :
	(1)	(I) True, (II) False	(2)	(I) False, (II) True
	(3)	(I) and (II) both True	(4)	(I) and (II) both False
	निम्न	कथनों पर विचार कीजिए		
	(I)	एक अधिक वायुदाब वाला टायर,	ट्रेड	के मध्य भाग में अधिक घिसता है।
	(II)	एक कम वायुदाब वाला टायर, ट्रेड	ड के	किनारों के पास अधिक घिसता है।
	उपरो	स्त कथनों हेतु सही विकल्प चुनिए	<i>:</i>	
	(1)	(I) सत्य, (II) असत्य		•
	(3)	(I) एवं (II) दोनों सत्य	(4)	(I) एवं (II) दोनों असत्य
27_A	1	54		[Contd
			• .	

129	75°C	;=°F,	the correct op	tion for tl	ne blank space	is:
	(1)	73.6	, i	(2)	192,6	
	(3)	77.4		(4)	167.0	
	75°C	:=°F,	रिक्त स्थान हेतु	सही विकल	य है:	
	(1)	73.6		(2)	192.6	
	(3)	77.4	•	. (4)	167.0	•
		1				
130	Whic	ch one of	the following e	quation is	correct ?	
	(1)	Gauge pro	essure = Absolu	ite pressu	re + Atmosphe	ric pressure
	(2)	Absolute	pressure = Gau	ge pressu	re + Atmosphe	eric pressure
	(3)	Atmosphe	ric pressure = .	Absolute 1	pressure + Gau	ige pressure
	(4)	Absolute	pressure = Gau	ige pressu	re + Atmosph	eric pressure
i	निम्न	में से कौन	ती समीकरण सही	है ?		
	(1)	प्रमापी दाब	= निरपेक्ष दाब	+ वायुमण्डल	नीय दाब	
	(2)	निरपेक्ष दाब	ा = प्रमापी दाब _{ें}	+ वायुमण्डल	तीय दाब	
	(3)	वायुमण्डलीय	र दाब = निरपेक्ष	दाब + प्रम	गापी दाब	
	(4)	निरपेक्ष दाब	। = प्रमापी दाब	÷ वायुमण्ड	इलीय दाब	
		y reigh				
131	"	i	s fitted on the	rear end	of crank shaft.	
	The	correct op	tion for the blo	mk space	is:	
	(1)	Crank Ge	ar	(2)	Pulley for wa	ater pump
	(3)	Vibration	damper	(4)	Fly wheel	$\mathcal{J}_{i,j} = \mathcal{J}_{i,j}$
	''क्रैंव	ह शाक्ट के	पिछले सिरे पर_	·. · · · · · · · · · · · · · · · · · ·	फिट होता है।"	
	रिक्त	स्थान हेतु	सही विकल्प है :			
. :	(1)	क्रैंक गियर		(2)	जल पम्प के वि	लेए पुली
	(3)	कम्पन अव	मंदक	(4)	फ्लाई व्हील	
27 _/	1]			55		[Contd

	(3) Ampere - Hour (4)	Watts
	वाहनों में प्रयोग होने वाली बैटरी की क्षमता	को सामान्यतः दर्शाया जाता है :
	(1) बोल्ट में (2)	एम्पीयर में
	(3) एम्पीयर-घंटा में (4)	वाट में
		·
133	For a good quality lubricant, consider	the following statements:
	(I) Change in viscosity should be minim	um with the change in temperature.
	(II) Specific heat should be low.	
	(III) Flash point should be high.	
	The True statements from the above ar	re:
	(1) (I) and (II) (2)	(II) and (III)
	(3) (I) and (III) (4)	(I), (II) and (III)
	एक अच्छी गुणवत्ता के स्नेहक हेतु, निम्न क	थनों पर विचार कीजिए :
	(I) तापमान में परिवर्तन के साथ श्यानता	में न्यूनतम परिवर्तन होना चाहिए।
	(II) विशिष्ट ऊष्मा कम होनी चाहिए।	
	(III) स्फुरांक अधिक होना चाहिए।	·
	उपरोक्त में से सत्य कथन हैं :	
	(1) (I) एवं (II) (2)	(II) एवं (III)
	(3) (1) एवं (111) (4)	(I), (II) एवं (III)
134	The Air-standard efficiency of Otto cyc	cle is given by :
·	_	
	(1) $\eta = 1 - \frac{1}{(r)^{\gamma - 1}}$ (2)	$\eta = 2 - \frac{1}{(r)^{\gamma - 1}}$
	(*)	(*)
	(3) $\eta = 1 + \frac{1}{(r)^{\gamma+1}}$	$\eta = 1 - \frac{1}{(r)^{\gamma+1}}$
	ऑटो चक्र की वायु-मानक दक्षता होती है :	
	(1) $\eta = 1 - \frac{1}{(r)^{\gamma - 1}}$ (2)	$\eta = 2 - \frac{1}{(r)^{\gamma - 1}}$
	(r)	$(r)^{r-1}$

132 The capacity of battery used in vehicles, is usually expressed in :

(2) Amperes

(1) Voits

(4)

135 In pressure lubrication system of an engine, the maximum oil pressure controlled by :				me, the maximum on pressure is
(1)	Oil	pump	(2)	Oil pressure gauge
(3)	Oil	pressure relief valve	(4)	Oil filter
एक इं	जन	की दाब स्नेहन प्रणाली में	अधिकत	म तेल दाब नियंत्रित होता है :
(1)	तेल	पम्प द्वारा	(2)	तेल दाब मापी द्वारा
(3)	तेल	दाब रिलीफ वास्त्व द्वारा	(4)	तेल फिल्टर द्वारा

136 In vehicles, the prime exhaust pollutants other than hydro-carbon, are :

- (1) CO and CO₂
- (2) CO_2 and NO_2
- (3) CO_2 and H_2O
- (4) CO and NO_X

वाहनों में हाइड्रो-कार्बन के अतिरिक्त अन्य मुख्य निकास प्रदूषण कारक है :

(1) CO एवं CO₂

- (2) CO₂ एवं NO₂
- (3) CO₂ एवं H₂O
- (4) CO एवं NO_X

137 If η_{bt} = Brake thermal efficiency

 η_{it} = Indicated thermal efficiency

and η_m = Mechanical efficiency

which one of the following is correct relation?

- (1) $\eta_{it} = \eta_{bi} \times \eta_m$
- $(2) \quad \eta_m = \eta_{it} \times \eta_{bt}$
- (3) $\eta_{bt} = \eta_{it} \times \eta_m$
- $(4) \quad \eta_m = \eta_{it} / \eta_{bt}$

यदि $\eta_{bi}^{}=$ ब्रेक तापीय दक्षता

η_{it}= सूचित तापीय दक्षता

एवं $\eta_m =$ यांत्रिक दक्षता हो, तो

निम्न में से कौनसा एक सम्बंध सही है

(1)
$$\eta_{it} = \eta_{bt} \times \eta_m$$

(2)
$$\eta_m = \eta_{it} \times \eta_{bt}$$

(3)
$$\eta_{bt} = \eta_{it} \times \eta_m$$

(4)
$$\eta_m = \eta_{it}/\eta_{bi}$$

138	Hydraulic Brahma's Press is based	on:	
	(1) Bernoulli's Theorem	(2)	Continuity equation
	(3) Pascal's law	(4)	Darcy law
	द्रव चालित ब्रह्मा प्रेस आधारित है :		
	(1) बरनौली के सिद्धान्त पर	(2)	सांतत्य समीकरण पर
	(3) पास्कल के नियम पर	(4)	डार्सी नियम पर
139	The range of compression ratio for	or peti	rol engine is:
	(1) 12-20	(2)	6-10
	(3) 20-25	(4)	3-5
	पेट्रोल इंजन के लिए सम्पीड़न अनुपात	की प	रास होती है :
	(1) 12-20	(2)	6-10
	(3) 20-25	(4)	3-5
140	In a four stroke engine, for how me the exhaust valve actually remains		
	(1) 180°	(2)	More than 180°
	(3) Less than 180°	(4)	360° (75)
	एक चतुःस्ट्रोक इंजन में निकास वाल्व,	क्रैंक :	शाफ्ट के कितने कोणीय विस्थापन तक
	वास्तव में खुला रहता है ?		5 57 22 22
	(1) 180°	(2)	180° से अधिक
	(3) 180° से कम	(4)	360°
		•	F.C43
2 7_	A] 5	8	[Contd

141·	In w	hich chapter of Motor Vehicle A vearing protection head gear w	ct-198 hile d	38, the section related to necessity riving motor cycle, is referred?			
	(1)	Chapter 2	(2)	Chapter 3			
	(3)	Chapter 4	(4)	Chapter 8			
	मोटर उल्ले	साइकिल चलाते समय सुरक्षात्मक ट ख मोटर यान अधिनियम, 1988 के	ोप पह किस	नने की आवश्यकता सम्बंधी धारा का अध्याय में किया गया है?			
	(1)	अध्याय 2	(2)	अध्याय 3			
	(3)	अध्याय ४	(4)	अध्याय 8			
142	As pof reissue	egistration of a motor vehicle i	for how emain	w long time period, the certificate is legally valid from the date of			
	(1)	10 years	(2)	15 years			
	(3)	20 years	(4)	25 years			
	मोटर जारी	यान अधिनियम, 1988 के अनुसार होने की तारीख से कितनी समया	किसी वधि त	मोटर यान का पंजीकरण प्रमाणपत्र, क विधिमान्य रहता है ?			
	(1)	10 वर्ष	(2)	15 वर्ष			
	(3)	20 वर्ष	(4)	25 वर्ष			
143	Out vehic	of the following, what is nec	essary	for the road worthiness of a			
	(I)	Registration of the vehicle					
	(II)	Appropriate road signs on the	road				
	(III)	(III) Effective braking system of the vehicle					
	Which one of the following is correct option for the above question?						
	(1)	(I) and (II)	(2)	(II) and (III)			
	(3)	(I) and (III)	(4)	(I), (II) and (III)			
	एक वाहन की मार्ग उपयुक्तता हेतु निम्न में से क्या आवश्यक हैं ?						
	(I)	वाहन का पंजीयन					
	(II)	सड़क पर उपयुक्त सड़क चिन्ह					
		वाहन की प्रभावी ब्रेकिंग प्रणाली					
		स्त प्रश्न हेतु निम्न में से कौनसा ।	विकत्य	सदी है ?			
	(1)	(I) एवं (II)		(II) एवं (III)			
	(3)	(I) एवं (III)					
27 A		(1) Q4 (III)	(9) ::::	(I), (II) एवं (III)			

144	The road sign showing the width limit of vehicle is a:			
	(1)	Mandatory sign ·	(2)	Warning sign
	(3)	Informatory sign	(4)	Line marking on road
	वाहन	की चौड़ाई सीमा दर्शाने वाला सड़	क चि	न्ह है एक :
	(1)	आदेशात्मक चिन्ह	(2)	चेतावनी चिन्ह
	(3)	सूचनात्मक चिन्ह	(4)	संड़क पर रेखांकन
				•
145	What	is not included in daily pre-	drivin	g inspection of a car?
	(1)	Checking the lubricant level	in en	gine
	(2)	Checking the coolant level		
	(3)	Checking the brake fluid leve	el	
	(4) Checking the lubricant level in differential			
	एक कार की प्रतिदिन चालनपूर्व जाँच में क्या सम्मिलित नहीं है ?			
	(1) इंजन में स्तेहक का स्तर जाँचना			
	(2)	शीतलक का स्तर जाँचना		
	(3)	ब्रेक द्रव का स्तर जाँचना		
	(4)	डिफ्रेंशियल में स्नेहक का स्तर ज	विना	
146	In M	_	tration	n of motor vehicles" is in which
	(1)	Chapter 1	(2)	Chapter 2
	(3)	Chapter 3	(4)	Chapter 4
	''मोट	र यानों का पंजीकरण'' मोटर यान	अधि	नयम, 1988 के कौनसे अध्याय में है?
	(1)	अध्याय 1	(2)	अध्याय 2
	(3)	अध्याय 3	(4)	अध्याय ४
27_	A]	60		[Contd

14/	1110	min chapter of Motor venicle Act	- 1988 is :
	(1)	Construction, equipment and main	tenance of motor vehicles
	(2)	Control of transport vehicles	
	(3)	Registration of motor vehicles	
	(4)	Offences, penalties and procedures	
	मोटर	र यान अधिनियम, 1988 का पाँचवाँ अध	याय है :
	(1)	मोटर यानों की संरचना, उपस्कर एवं	अनुरक्षण
	(2)	परिवहन यानों का नियंत्रण	
	(3)	मोटर यानों का पंजीकरण	
	(4)	अपराध, शास्तियाँ तथा प्रक्रिया	
148	A Ca	Carnot engine working between 367°C	and 47°C temperatures, produces
		kJ of work. What will be the heat	
•	(1)	150 kJ (2)	172 kJ
	(3)	300 kJ (4)	320 kJ
	_	कार्नोट इंजन, जो कि 367°C एवं 47°C ता	
	कार्य	उत्पन्न करता है। प्रक्रम के दौरान दी ग	ई ऊष्मा क्या होगी ?
	(1)	150 kJ (2)	172 kJ
	(3)	300 kJ (4)	320 kJ
149		processes used for air-conditionin dition), are :	g in summer (hot and humid
	(1)	Heating and humidification (2)	Heating and dehumidification
	(3)	Cooling and humidification (4)	Cooling and dehumidification
	गर्भी	(ऊष्ण एवं आर्द्र अवस्था) में वातानुकूलन व	हेतु प्रयोग की जाने वाली विधियाँ है:
	(1)	तापन एवं आर्द्रीकरण (2)	तापन एवं अनार्द्रीकरण
	(3)	शीतन एवं आर्द्रीकरण (4)	शीतन एवं अनार्दीकरण
27_A	1	61	[Contd

150 If a closely coiled helical spring of mean diameter D, is subjected to an axial load W, what will be the deflection of the spring?

$$(1) \quad \frac{4WD}{\pi d^3}$$

(2)
$$\frac{8WD}{\pi d^3}$$

$$(3) \quad \frac{4WD^3n}{G \cdot d^4}$$

$$(4) \quad \frac{8WD^3n}{G \cdot d^4}$$

Where:

d = diameter of the spring wire

n = number of active turns of the spring

G =modulus of rigidity of the spring material.

माध्य व्यास D की एक बंद कुण्डलित स्प्रिंग पर यदि अक्षीय भार W लगाया जाए, तो स्प्रिंग का विक्षेप क्या होगा ?

$$(1) \quad \frac{4WL}{\pi d^3}$$

$$(2) \quad \frac{8WD}{\pi d^3}$$

$$(3) \quad \frac{4WD^3n}{G \cdot d^4}$$

$$(4) \quad \frac{8WD^3n}{G\cdot d^4}$$

जहाँ :

d = स्प्रिंग के तार का व्यास

n = स्प्रिंग की सिक्रय कुण्डलियों की संख्या

 $G = \mathbf{k} \dot{\mathbf{y}}$ of \mathbf{y} of \mathbf{y} of \mathbf{y} of \mathbf{y}

SPACE FOR ROUGH WORK / कच्चे काम के लिये जगह

27_A] 63 [Contd...

