प्रास्थापकं स्विति शिक्षा प्रीक्षा २०॥

CHEMISTRY

कोड / Code :

05

पुरितका में पृष्ठों की संख्या / Number of Pages in Booklet: 48

पुस्तिका में प्रश्नों की संख्या /

Number of Questions in Booklet: 150

50 2539

O5 Chemistry
बिक्य कोड

समय / Time : 3 घंटे / Hours

1. Answer all questions.

2. All questions carry equal marks.

Only one answer is to be given for each question.

INSTRUCTIONS

 If more than one answers are marked, it would be treated as wrong answer.

5. Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.

6. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)

7. The candidate should ensure that Series Code of the Question Paper Booklet and Answer Sheet must be same after opening the envelopes. In case they are different, a candidate must obtain another Question Paper of the same series. Candidate himself shall be responsible for ensuring this.

 Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable material with him/her will be strictly dealt as per rules.

 Please correctly fill your Roll Number in O.M.R. Sheet. 5 marks will be deducted for filling wrong or incomplete Roll Number.

Warning: If a candidate is found copying or if any unauthorised material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted under Section 3 of the R.P.E. (Prevention of Untairmeans) Act, 1992. Commission may also debar him/her permanently from all future examinations of the Commission.

निर्देश

पूर्णांक / Maximum Marks : 300

- 1. सभी प्रश्नों के उत्तर दीजिए ।
- 2. सभी प्रश्नों के अंक समान हैं।
- प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।

4. एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा।

5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं. जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया हैं। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बचल को उत्तर-पञ्चक पर नीले बॉल प्वाइंट पेन से गहरा करना है ।

6. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है। किसी भी प्रश्न से संबंधित गोले या ववल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।

7. प्रश्न-पत्र पुस्तिका एवं उत्तर पत्रक के लिफाफ की सील खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुस्तिका पर वही सीरीज अंकित है जो उत्तर पत्रक पर अंकित है! इसमें कोई भिन्नता हो तो वीक्षक से प्रश्न-पत्र की ही सीरीज वाला दूसरा प्रश्न-पत्र का लिफाफा प्राप्त कर लें। ऐसा न करने पर जिम्मेदारी अध्यर्थी की होगी।

8. मोबाईल फोन अथवा इलेक्ट्रोनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित हैं। यदि किसी अध्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।

 कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानी पूर्वक सही मरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से अनिवार्य रूप से कार्ट जाएंगे।

चेतावनी : अगर कोई अम्पर्धी नकल करते .पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, तो उस अम्पर्धी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराई जायेगी और आर. पी. ई. (अनुचित साधनों की रोकथाम) अधिनियम, 1992 के नियम 3 के तहत कार्यवाही की जायेगी। साथ ही आयोग ऐसे अभ्यर्थी को भिद्यष्य में होने वाली आयोग की समस्त परीक्षाओं से विवर्णित कर सकता है।

[Contd...

05_C]

- 1 Which of the following combination is responsible for female sex determination?
 - (1) One X chromosome of male and one X chromosome of female
 - (2) One X chromosome of male and one Y chromosome of female
 - (3) One Y chromosome of male and one Y chromosome of female
 - (4) One X chromosome of female and one Y chromosome of male बालिका लिंग निर्धारण के लिए निम्न में से कौन-सा वंश सूत्रों का युग्म उत्तरदायी हैं ?
 - (1) पुरुष का एक X वंशसूत्र एवं महिला का एक X वंशसूत्र
 - (2) पुरुष का एक X वंशसूत्र एवं महिला का एक Y वंशसूत्र
 - (3) पुरुष का एक Y वंशसूत्र एवं महिला का एक Y वंशसूत्र
 - (4) महिला का एक X वंशसूत्र एवं पुरूष का एक Y वंशसूत्र
- 2 Full form of nucleic acid DNA is -
 - (1) Deoxyribo Nucleic Acid
 - (2) Dual Nucleic Acid
 - (3) Developed Nucleic Acid
 - (4) Deoxy Nucleic Acid
 - डी. एन. ए. का पूर्ण नाम है -
 - (1) डीऑक्सीरिबो न्यूक्लिक एसिड
 - (2) इयुअल न्युक्लिक एसिड
 - (3) डेवलप्ड न्यूविलक एसिड
 - (4) डीऑक्सी न्यूक्लिक एसिड
- 3 Main propounders of 'Gestalt Theory of learning' are -
 - (1) Wertheimer, Koffka and Kohler
 - (2) Koffka, Thomdike and Kohler
 - (3) Wertheimer, Koffka and Frued
 - (4) Wertheimer, Frued and Kohler

'सूझ द्वारा सीखने के समाकृतिवाद' के प्रवर्तक थे -

- (1) वर्थीमर, कोफका एवं कोहलर
- (2) कोफका, थार्नडाइक एवं कोहलर
- (3) कोहलर, कोफका एवं फ्रायड
- (4) वर्थीमर, फ्रायड, कोहलर

[Contd...:

4 .	Whic	-	ective	is not classified in the 'cognitive
	(1)	Generalization	(2)	Translation
	(3)	Application	(4)	Pictorial depiction
	निम्न	में से कौन सा उद्देश्य सीखने के	संज्ञाना	त्मक क्षेत्र का नहीं है ?
	(1)	सामान्यीकरण	(2)	अनुवाद करना
	(3)	अनुप्रयोग करना	(4)	सचित्र विवरण
5	Whic	ch one is not a prominent cha	eracter	ristics of 'creativity' ?
	(1)	Ability of transformation		
	(2)	Emotionalized tendency to re	act in	certain way
	(3)	Re - defining certain word o	r con	cept
	(4)	Divergent production ability		
	निम्न	में से कौन-सी सृजनात्मकता की	प्रमुख	विशेषता नहीं है ?
	(1)	रूपांतरण की योग्यता		
1	(2)	किसी परिस्थिति के प्रति विशेष र	भांवेगिक	प्रतिक्रिया का प्रदर्शन
·	(3)	किसी शब्द या अवधारणा को पुन	र्ग्यरिभा	षित करने की योग्यता
	(4)	केन्द्राविमुख उत्पादन की योग्यता		
6	Loca	ite the correct range of "I.Q." of	of the	backward children shown below-
	(1)	Idiot - 10 to 25		
	(2)	Imbicile - 26 to 49		•
	(3)	Feeble minded - 50 to 59		
	(4)	Dull and backward - 80 to 9		
	विभिन	न श्रेणी के मंदित बालकों की दर्शार्य	री गयी	सही औसत बुद्धि का चयन कीजिए-
	(1)	मंद बुद्धि - 10 से 25		
	(2)	हीन बुद्धि - 26 से 49		
	(3)	दुर्बल बुद्धि - 50 से 59		
	(4)	पिछड़ा बालक — 80 से 99		
05_0	C)	. 3		[Contd

- 7 Indicate 'G' for growth and 'D' for development for each of the following statements -
 - (I) A six month old baby shows sign of teething
 - (II) A three month old baby begins to turn over and lie on its stomach
 - (III) An infant begins to focus his eyes on an object dangling before it
 - (IV) A thirteen year old boy begins to have hair on his face Select the correct answer -
 - (1) (I) D, (II) G, (III) G, (IV) D
 - (2) (I) G, (II) D, (III) D, (IV) G
 - (3) (I) G, (II) G, (III) D, (IV) D
 - (4) (1) G, (II) D, (III) G, (IV) G

निम्न कथनों में से प्रत्येक के सम्मुख अभिवृद्धि दर्शाने वाले कथन के सम्मुख 'G' एवं विकास दर्शाने वाले कथन के सम्मुख 'D' लिखें -

- (I) एक छः माह के बालक में दांतों का निकलना
- (II) तीन माह के बालक का उल्टा पलट कर पेट के बल लेटना
- (III) एक शिशु द्वारा उसके आगे लुड़कती वस्तु पर आंखे केन्द्रित रखना
- (IV) एक तेरह वर्ष के बालक के चेहरे पर बालों का उगना सही उत्तर का चयन करें –
- (1) (1) D, (II) G, (III) G, (IV) D
- (2) (I) G, (II) D, (III) D, (IV) G
- (3) (I) G, (II) G, (III) D, (IV) D
- (4) (I) G, (II) D, (III) G, (IV) G
- Who are the two referred 'humanist' psychologists who have explained human personality in terms of 'self' and 'needs' theory?
 - (1) Maslow and Rogers
 - (2) Rogers and Skinner
 - (3) Cooley and Maslow
 - (4) Alport and Catell

ऐसे दो संदर्भित मानववादी मनोवैज्ञानिक कौन है जिन्होंने मानव व्यक्तित्व की व्याख्या स्वयं एवं आवश्यकताओं के सिद्धांत के आधार पर की है ?

- (1) मैसलो एवं रोजर्स
- (2) रोजर्स एवं स्कीनर
- (3) कुले एवं मैसलो
- (4) आलपोर्ट एवं केटिल

05_CJ

9		ich one of the following is not the cept"?	ne important characteristics of 'self
	(1)	-	
	(2)		1
	(3)	Self concept is multi faceted	-
	(4)	Self concept is stable	
	निम्न		विशेषता महत्वपूर्ण नहीं है ?
	(1)	आत्म – सम्प्रत्य व्यवस्थित होती है	
	(2)	आत्म – सम्प्रत्य विशिष्ट लक्ष्य होती	₹
	(3)	आत्म – सम्प्रत्य बहु आयामी होर्त	ते है
	(4)	आत्म – सम्प्रत्य स्थायी होती है	
10		ning out - comes in table 2 -	are mentioned in table 1 with their
	(4)		e - 2
		• • • • • • • • • • • • • • • • • • • •	tes the mental image of idea ides pre-requisite knowledge
			fraw parallels between familiar
	(0)		new ideas
	(D)	Advance organiser (IV) Provi	
		ch the correct set of order in abo	-
	(1)	(A) - (I), (B) - (II), (C) - (IV),	(D) - (III)
	(2)	(A) - (I), (B) - (IV), (C) - (III),	(D) - (II)
. :	(3)	(A) - (I), (B) - (III), (C) - (IV),	(D) - (II)
		(A) - (II), (B) - (I), (C) - (IV),	
		तालिका 1 में दी गई अनुदेशन रणनीतिर गम उद्देश्य दिए गए है.—	में के समक्ष तालिका 2 में उनके अपेक्षित
			लेका - 2
	(A)		सी विचार को मानस पटल पर अंकित
	()	सामग्री कर	
	(D)		
;	(D)	- · ·	सी ज्ञान को प्रदान करने से पूर्व वश्यक जानकारी प्रस्तुत करना
	(C)		ले से परिचित एवं नवीन ज्ञान का
	(0)		ानान्तर चित्रण प्रस्तुत करना
	(D)		सी कार्य को निष्पादित करना
	` '	दोनों तालिकाओं में दिये गये पदों का	
	(1)	(A) - (I), (B) - (II), (C) - (IV),	
		(A) - (I), (B) - (IV), (C) - (III),	
		(A) - (I), (B) - (III), (C) - (IV), (A) - (II), (B) - (I), (C) - (IV),	
	לד)	$(\Delta f^{-1}(\Pi), (D)^{-1}(\Pi), (C)^{-1}(\Pi^{\vee}),$	(D) - (m)
05_C]	5	[Contd

11	Fool	ish conformity to peer pressure	e is n	nost likely to be motivated by -
	(1)	Safety need	(2)	Need for belongingness
	(3)	Self - Actualisation need	(4)	Achievement
	_	ायों' के दबाव से मूर्खतापूर्ण अनुगमन है ?	निम्न	में से किस आवश्यकता से अभिप्रेरित
	(1)	सुरक्षा की आवश्यकता	(2)	अपनेपन का सम्बन्ध
	(3)	आत्म सम्प्राप्ति – वास्तविकीकरण	(4)	उपलब्धि
12	The	drive - reduction theory of m	otivat	ion is given by -
	(1)	Hull	(2)	Freud
	(3)	Maslow	(4)	None of the above
	प्रेरणा	[– प्रबलन – हास सिद्धांत के प्र ^व	दाता है	5 –
	(1)	हल	(2)	फ्रायड
	(3)	मैसलो	(4)	इनमें से कोई नहीं
13		nts who wish to strengthen the	neir c	hildren's achievement motivation
	(1)	Encourage children at an early parental help.	y age	to handle responsibility without
	(2)	Tell their children that failure	e in 1	ife brings suffering.
	(3)	Warmly accept and praise the succeed or fail.	ir chil	ldren regardless of whether they
	(4)	Recognize that young childr successfully without parental		an't be expected to do things
		अभिभावक जो अपने बालकों की उप उन्हें चाहिए –	लब्धि	 अभिप्रेरणा को बढ़ावा देना चाहते
	(1)	बालकों को प्रारंभिक वर्षो में बिना सम्भालने हेतु प्रोत्साहित करें ।	अभिभ	ावकों की मदद के अपनी जिम्मेदारियां
	(2)	बालकों को बताएं कि असफलता	जीवन	में तकलीफ या दुःख लाती हैं ।
	(3)	चाहे बालक सफल हो अथवा असफ	ल, उन्	हें स्वीकार करें व उनकी प्रसंशा करें।
	(4)	यह स्वीकार करें कि बालक अभिभ	ावकों	की सहायता के बिना किसी कार्य का

सफलता पूर्वक निर्वहन नहीं कर सकते ।

14	Whi that	ich test focuses on information goes on in life ?	acquir	red through the informal learning
	(1)	Personality	(2)	Achievement
	(3)	Atitude	(4)	Intelligence
		में से कौन - सा परीक्षण जो जीव प्राप्त सूचनाओं पर केन्द्रित है ?	बन पर्य	न्ति चलने वाले अनौपचारिक अधिगम
	(1)	व्यक्तित्व परीक्षण	(2)	उपलब्धि परीक्षण
	(3)	अभिवृत्ति परीक्षण	(4)	बुद्धि परीक्षण
15	To r been	measure the degree of learning to exposed to a specific learning	hat ha experi	is taken place after a person has ience, which test is appropriate?
	(1)	Achievement tests		
	(2)	Aptitude tests		
	(3)	Diagnostic tests		
	(4)	Test - Retest		
	एक है, य	विशिष्ट अधिगम अनुभव प्रदान करने ह मापने हेतु निम्न में से कौन —	ो के प साप	ाश्चात् अधिगम किस स्तर तक हुआ रीक्षण उपयुक्त है ?
	(1)	उपलब्धि परीक्षण		
	(2)	अभिवृति परीक्षण		
	(3)	निदानात्मक परीक्षण		
	(4)	परीक्षण एवं पुनःपरीक्षण		
		_		· .
16	In op basis	perant conditioning, association to	etwee	en stimulus - response is on the
	(1)	Law of Effect		
	(2)	Law of Contiguity		•
	(3)	Law of Exercise		
	(4)	Law of Habit Formation		
	सक्रिय	अनुक्रिया 'अनुबन्धन' जिस उद्दीपक -	- अनु	क्रेया सम्बन्ध पर आधारित है, वह है
	(1)	प्रभाव का नियम		
	(2)	समीपता का नियम		
	(3)	अध्यास का नियम		
	(4)	आदतों के निर्माण का नियम		
05_C		7		[Contd

05_C	7	8 [Contd
	(3) सक्रिय अनुक्रिया अधिगम सिद्धान्त	त (4) सूझ का सिद्धान्त
	(1) सामीप्यता सिद्धान्त	(2) अनुबन्धन सिद्धान्त
	सिद्धान्त जिसमें किसी समस्या के तात्व	कालिक समाधान को प्रमुखता दी जाती है—
	(3) Operant learning	(4) Insight theory
	(1) Contiguity theory	(2) Conditioning
20	The name of the theory advocati	ing sudden solution to the problem is -
		• •
	(3) 120	(4) 110
	(1) 125	(2) 83
	बुद्धिलब्धि होगी –	न पना नगरमानुस्राचना जापु 10 वय है, उसका
	` '	वर्ष तथा कालानुक्रमिक आयु 10 वर्ष है, उसकी
	(3) 120	(2) 83 (4) 110
	(1) 125	
19	What will be the IQ of a chil Chronological age of 10 years?	ld having Mental age of 12 years and
	(4) (2) अथवा (3)	
	(3) निष्पत्ति परीक्षण	
	(2) अमौखिक बुद्धिमत्ता परीक्षण	
	(1) मौखिक बुद्धिमत्ता परीक्षण द्वारा	T .
	मूक एवं बिधरों की बुद्धिमत्ता का प	•
	(4) Either (2) or (3)	
	(3) Performance test	
	(2) Non - verbal intelligence	test
	(1) Verbal intelligence test	
18	IQ of 'deaf' and 'dumb' can be	tested by -
	(3) बिनेट	(4) टर्मन
	(1) स्टर्न	(2) वेशलर
		वकास जिस मनोवैज्ञानिक ने किया, वह है-
	(3) Binet	(4) Terman
	(1) Stern	(2) Wechsler
1,	Concept of mental age was de-	veloped by -

21	Ext	inction is the result of -		
	(I)	Inhibition	(2)	Lack of reinforcement
	(3)	Tension	(4)	Repression
	विलु	प्त होना परिणाम है —		
	(1)	अवरोध	(2)	पुनर्वलन का अभाव
	(3)	तनाव	(4)	दमन
22	Whi	ich is not appropriate regarding	g the	learning ?
	(1)	Learning is not affected by	matura	ation
	(2)	Motivation facilitates learning	3	
	(3)	Problem solving is highest le	evel o	of learning
	(4)	Learning is change in behavi	our	
	अधि	गम के संबंध में उपयुक्त नहीं है -	_	
	(1)	अधिगम पर परिपक्वता का प्रभाव	नहीं	पडता
	(2)	अभिप्रेरणा से अधिगम में वृद्धि ह	ोती है	
	(3)	समस्या समाधान अधिगम का उच्च	वतम स	तर है
	(4)	अधिगम व्यवहारगत परिवर्तन होत	िहै	
23	Meta	a - Cognition is the process be	ased o	on -
	(1)	Self awareness regarding one'	s owr	actions or mental powers
	(2)	Awareness of Multiple intellig	gence	and manism
	(3)	Awareness of co-existence an	d soc	iability
	(4)	Potential of solving mathema	tical p	problems
	मेटा वह है		क्रिया	निम्न में से जिस पर आधारित है,
	(1)	किसी के द्वारा अपने कार्यों एवं म	गनसिक	5 शक्तियों के प्रति स्व–संज्ञान
	(2)	बहुआयामी बुद्धि एवं मानवीयता स		
	(3)	सहअस्तित्व एवं सामाजिकता का स		·
	(4)	-0-0-	• • •	

(1)	खोज प्रणाली शिक्षण प्रणाली	(2) (4)	अनुकरण प्रणाली अभ्यास एवं पुर्नभ्यास
(1)	_	(2)	अनुकरण प्रणाली
कम्धः	टर एक शिक्षक की तरह कार्य क	रता है	-
(3)	Tutorial mode	(4)	•
(1)	Discovery mode	(2)	Simulation mode
Com	puter acts as a teacher modes	of the	he following
(4)	उपर्युक्त सभी		
(3)	माइक्रोसॉफ्ट प्रदत्त इंटरफेस		
(2)	विडियो डिस्क		
(1)	विडियो कैसेट		;
एक	अंतःक्रियात्मक विडियो सिस्टम में नि	न में र	ते कौन-सा माध्यम प्रयोग नहीं होता ?
(4)	All of the above		· · ·
(3)	System provided by an inter	face t	o microsoft
(2)	Video disc		
(1)	Video casette		•
Whi	ch one of the following is no	t used	in an interactive video system?
(4)	नैतिक आचरण नियंत्रित रखना		
(3)	मानसिक एवं भावात्मक नियंत्रण		
(2)	अभिवृद्धि एवं स्वास्थ्य को प्रभावि	ात कर	ना
(1)	रासायनिक संतुलन बनाए रखना		
_	_	में ए	डोक्राइम अथवा अन्तःस्रावी ग्रंथियों का
(4)	Control moral conduct	_	
(3)	Control mental and emotion	al life	
(2)	Affect growth and health	•	•
(1)	Maintain chemical balance		
	_	t the	function of the endocrine glands
	in a (1) (2) (3) (4) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	in adolescents ? (1) Maintain chemical balance (2) Affect growth and health (3) Control mental and emotion (4) Control moral conduct निम्न में से कौन — सा प्रकार्य किशोरों नहीं है ? (1) रासायनिक संतुलन बनाए रखना (2) अभिवृद्धि एवं स्वास्थ्य को प्रभावि (3) मानसिक एवं भावात्मक नियंत्रण (4) नैतिक आचरण नियंत्रित रखना Which one of the following is no (1) Video casette (2) Video disc (3) System provided by an inter (4) All of the above एक अंतःक्रियात्मक विडियो सिस्टम में निर्धाः (1) विडियो कैसेट (2) विडियो डिस्क (3) माइक्रोसॉफ्ट प्रदत्त इंटरफेस (4) उपर्युक्त सभी Computer acts as a teacher modes (1) Discovery mode (3) Tutorial mode	(1) Maintain chemical balance (2) Affect growth and health (3) Control mental and emotional life (4) Control moral conduct निम्न में से कौन – सा प्रकार्य किशोरों में एं नहीं हैं ? (1) रासायनिक संतुलन बनाए रखना (2) अभिवृद्धि एवं स्वास्थ्य को प्रभावित कर (3) मानसिक एवं भावात्मक नियंत्रण (4) नैतिक आचरण नियंत्रित रखना Which one of the following is not used (1) Video casette (2) Video disc (3) System provided by an interface t (4) All of the above एक अंत क्रियात्मक विडियो सिस्टम में निम्न में स (1) विडियो कैसेट (2) विडियो डिस्क (3) माइक्रोसॉफ्ट प्रदत्त इंटरफेस (4) उपर्युक्त सभी Computer acts as a teacher modes of t (1) Discovery mode (2) (3) Tutorial mode (4)

TANK!

27		want to select certain test for different activities -	guida	nce and counselling to your students
		Activities		Set of tests
	(A)	For concurricular	(I)	Mental ability and aptitude
	(B)	For problemed children	(II)	Intelligence, aptitute and interest
	(C)	For case studies	(III)	Intelligence, aptitute, interest, personality and adjustment
	(D)	For group preparing for Performing different task	(IV)	Personality
	Selec	ct the appropriate test for the	he abo	ove activities -
	(1)	(A) - (III), (B) - (IV), (C)	- (I),	(D) - (II)
	(2)	$(A) - (\Pi I), (B) - (IV), (C)$	- (II),	(D) - (I)
		(A) - (II), (B) - (IV), (C)	•	
		(A) - (II), (B) - (IV), (C)		
				न्न गतिविधियों के निर्देशन एवं परामर्श
	_		गति	मिथयों के आधार पर सही परीक्षणों का
	चयन	कीजिए।		
		गतिविधियाँ		परीक्षणों का समुचय
	(A)	पाठ्य – सहगामी क्रियाएं (I)	मानसिक योग्यता एवं अभिक्षमता परीक्षण
	(B)	समस्या – मूलक बालकों (Π)	बुद्धि, अभिक्षमता एवं अभिरूचि
		के लिए		परीक्षण
	(C)	व्यक्ति अध्ययन (III)	बुद्धि, अभिक्षमता, अभिरूचि, व्यक्तित्व
				् एवं समायोजन परीक्षण
			IV)	व्यक्तित्व परीक्षण
	(-)	हेत् समूहों का चयन	,	
	उक्त	गतिविधियों के लिए सही परीक्ष	णों क	समुच्चय चुनिए -
	(1)	(A) - (III), (B) - (IV), (C)	- (I),	(D) - (II)
		(A) - (III), (B) - (IV), (C)		
		(A) - (II), (B) - (IV), (C)		
		(A) - (II), (B) - (IV), (C)		
28	Sync	hronous media of communi-	cation	includes -
	(1)	Chat	(2) Video conferencing
	(3)	Teleconferencing	(4) All of the above
	संप्रेषप	ग के तुल्यकालिक माध्यम है –		
	(1)	ਹੈ ਟ	(2) विडियो कॉन्फ्रेसिंग
	(3)	टेलेकॉन्फ्रेसिंग	(4) उपरोक्त सभी
05_C]](()		11	[Contd

05_0		13	[Contd		
-	(3) 16 तथा 16	(4)	16 तथा 14		
	(1) 14 तथा 15	(2)	14 तथां 16		
	समन्यूद्रानी A, B तथा C का उ परमाणु क्रमांक 15 है । A तथ	रव्यमान संख्याए n C में प्रोटोंनों	क्रमशः 30, 31 व 32 है । B का की संख्या है		
	(3) 16 and 16	• • •	16 and 14		
	(1) 14 and 15	• •	14 and 16		
	number of B is 15. number	r of protons i	in A and C are:		
34	Isotones A, B and C have ma	ass numbers 30), 31 and 32 respectively. Atomic		
	(3) 8	(4)	9		
	(I) 6	(2)	7		
	` /	, ,	ग्मित इलेक्ट्रोन की संख्या न्यूनतम है		
	(3) 8	(4)	9		
	having atomic number. (1) 6	(2)	7		
33		npaired electro	ons are present in the element		
	(3) 23	(4)	44		
	(1) 15	(2)	22		
	` '	. ` ′	सके अणु में इलेक्ट्रान की संख्या है		
	(3) 23	(4)	44		
	(1) 15		22		
32	Molecular weight of an oxider in a molecule of this oxide		is 44. The number of electrons		
	(4) एकल आवेश युक्त हीलिय	गम आयन			
	(3) एक द्विआयनित हीलियम	परमाणु .			
	(2) हीलियम का एक समस्था				
	(1) इलेक्ट्रॉन रहित हाइड्रोजन	परमाणु	•		
	एक α-कण होता है				
	(4) a singly helium ion				
	(3) a doubly ionized heliu	ım atom			
	(2) a helium isotope				
	(1) hydrogen atom devoid	of electron			

An α -particle is

35	Inert pair effect is shown by			
	(1) s-block elements	(2)	p-block elements	
	(3) d-block elements	(4)	f-block elements	
	निष्क्रिय युग्म प्रभाव को दर्शाते हैं			•
	(1) s-ब्लॉक तत्व	(2)	p-ब्लॉक तत्व	
	(3) d-ब्लॉक तत्व	(4)	f-ब्लॉक तत्व	•
36	A metal that forms acidic oxide			
	(1) Zn	(2)	Al	
	(3) Cr	(4)	Ni	
	एक धातु जो अम्लीय ऑक्साइड बनात	ा है	.:	
	(1) Zn	(2)	Al	
	(3) Cr	(4)	Ni	
37	Vitamin B ₁₂ contains			
	(1) Fe	(2)	·Co	:
	(3) Cu	(4)	Ni	* ;
	विटामिन बी ₁₂ में होता है			* ₁ ¢
	(1) Fe	(2)	Со	
٠.	(3) Cu	(4)	Ni	
38	Shape of Ni(CO) ₄ is			
	(1) Tetrahedral	(2)	Square planar	13
	(3) Octahedral	(4)	Linear	
	Ni(CO) ₄ की आकृति है			
	(1) चतुष्फलकीय	(2)	समतल वर्गाकार	
	(3) अष्टफलकीय	(4)	रेखीय	
39	Which carbonyl is paramagnetic ?			<u>.</u>
	(1) Ni(CO) ₄	(2)	Cr(CO) ₆	
	(3) Fe(CO) ₅	(4)	. 0	ŧ.
	अनुचुम्बकीय कार्बोनायल कौन-सा है ?			
	(1) Ni(CO) ₄	(2)	Cr(CO) ₆	
	(3) Fe(CO) ₅	(4)	V(CO) ₅	C.E.
05_C	Cl 14		-	[Contd
				~ VIII W ***

40	Stro	ngest metallic bond will be pr	esent	in .	
	(1)	Fe	(2)	Mn	
	(3)	Sc	(4)	Cr	
	सबसे	शक्तिशाली धात्विक बन्ध उपस्थित	होगा	•	
	(1)	Fe में	(2)	Mn में	
	(3)	Sc में	(4)	Cr में	
41	Whic	ch ore is concentrated by froth	float	tation method ?	
	(1)	Bauxite	(2)	Haematite	
	(3)	Sulphide	(4)	Cryolite	
	झाग	प्लवन विधि से किस अयस्क का	सान्द्रण	किया जाता है ?	
	(1)	बाक्साइट	(2)	हिमेटाइट	
	(3)	सल्फाइड	(4)	क्रायोलाइट	
42	Aque	eous solution of sodium sulpha	ite wi	ll be	
	(1)	neutral	(2)	buffer	
	(3)	acidic	(4)	basic	
-	सोडिय	ाम सल्फेट का जलीय विलयन होग	Г		
	(1)	उदासीन	(2)	बफर	
	(3)	अम्लीय	(4)	क्षारीय	
43	In th	yroid disorder the isotope that	is us	sed is	
	(1)	²⁴ Na	(2)	$^{32}\mathbf{p}$	
	(3)	⁶⁰ Co	(4)	13 ¹ I	•
	अवटुः	प्रंधि विकार में जिस समस्थानिक अ	णु का	प्रयोग होता है, वह है	
	(1)	²⁴ Na	(2)	32 p	
	(3)	⁶⁰ Co	(4)	131 <u>I</u>	
44	Out	of the follwoing which bond i	s of l	least strength	
	(1)	Hydrogen bond	(2)	Ionic bond	
	(3)	Covalent bond	(4)	Metallic bond	
	निम्नि	निखत में से कौन–सा आबन्ध सबस्	कम	शक्ति का है	
	(1)	हाइड्रोजन आबन्ध	(2)	आयनिक आबन्ध	
	(3)	सहसंयोजक 'आबन्ध	(4)	धात्विक आबन्ध	
05_C	<u>'</u>]				[Contd

45	5 Which of the following anion is	the weakest base ?
	(1) $C_2H_5O^-$	(2) NO_3^-
	(3) F	(4) CH ₃ COO ⁻
	निम्नलिखित में से कौन-सा ऋणायन	सबसे कम क्षारीय है ?
	(1) $C_2H_5O^-$	(2) NO_3^-
	(3) F ⁻	(4) CH ₃ COO ⁻
46	Stable end product of ²³⁸ U will	be
	(1) 206 Pb	$(2) \cdot {}^{234}\text{Th}$
	(3) ^{235}U	(4) ²⁰⁹ Bi
	²³⁸ U का स्थाई अन्तिम उत्पाद है	
	(1) ²⁰⁶ Pb	(2) 234 Th
	(3) ^{235}U	(4) 209 Bi
47	Which of the following is most u reaction in general?	nlikely to affect the rate of a chemical
	(1) Size of the reaction vessel	
	(2) Temperature	
	(3) Concentration of the reactan	
	(4) Concentration of the product	·
	निम्नलिखित में से किसका प्रभाव रासार्या सबसे कम है ?	नेक अभिक्रिया के वेग पर पड़ने की संभावना
	(1) अभिक्रिया पात्र का आकार	
	(2) ताप	
	(3) अभिकारकों की सान्द्रता	,
	(4) उत्पादों की सान्द्रता	
	() = (() 4/1 () 2/1 ()	••
48	The order of a reaction is obtaine	d from its
	(1) stoichiometric equation	
	(2) rate equation	
	(3) number of reactant molecules	
	(4) number of product molecules	
	किसी अभिक्रिया की कोटि ज्ञात की जा	सकती है इसके
	(1) स्टॉइकियोमीट्री समीकरण से	
	(2) वेग समीकरण से	
	(3) अभिकारक अणुओं की संख्या से	•
	(4) उत्पाद अणुओं की संख्या से	
05_C		[Contd

49	Which of the following reactions	occuring in time scales shown is fastest?
	(1) Pico second	(2) Nano second
	(3) Femto second	(4) Milli second
	नीचे दर्शाये गये समय-पैमानों में सम्पन् होगी ?	न होने वाली अभिक्रियाओं में कौन≔सी तीव्रतम
	(1) पिको सैकण्ड	(2) नैनो सैकण्ड
	(3) फेम्टो सैकण्ड	(4) मिली सैकण्ड
50	The rate of a reaction is describ	ped by $\frac{-d[A]}{dt} = k[A][B]^2 [C]^3 [D]^{-1}$
		t is not true. The rate of reaction will
	(1) A	(2) C
	(3) D	(4) B
	एक अभिक्रिया का वेग इस प्रकार व	क्त किया गया है
	-d[A]	
	$\frac{1}{dt} = k[A][B]^2[C]^3[D]^{-1} f$	नेम्नलिखित कथन में से कौन-सा सही नहीं है ?
	अभिक्रिया का वेग बढ़ जायेगा यदि वि	नेम्नांकित की सांद्रता बढ़ा दी जाय
	(1) A	(2) C
	(3) D	(4) B
51	The mechanism of the reaction	$P+Q \rightarrow R$ is as follows:
	$P \xrightarrow{K_1} S(slow)$	•
	$S+Q \xrightarrow{K_2} R(fast)$,
	The rate equation and the order waset:	rith respect to P and Q are given by the
	(1) K ₁ [P], 1, 0	(2) $K_1 [P]^2$, 0, 1
	(3) K ₁ [P][Q], 2, 0	(4) $K_1 [P]^2$, 2, 0
	अभिक्रिया $P+Q \rightarrow R$ की क्रियाविधि	इस प्रकार है
	$P \xrightarrow{K_1} S$ (मन्द)	
	$S+Q \xrightarrow{K_2} R$ (तीब्र)	
	वेग समीकरण तथा P व Q के सापेक्ष को	टि निम्नांकित सेट द्वारा व्यक्त की जा सकती है:
	(1) K ₁ [P], 1, 0	(2) $K_1 [P]^2$, 0, 1
	(3) K ₁ [P][Q], 2, 0	(4) K_i [P] ² , 2, 0

	• •							
05_C					18			[Contd
	(3)	अनि	र्धारणीय		(4)	अज्ञात		
	(1)	अधि	कतम		(2)	शून्य		
	परम	शून्य	ताप पर स	भी तत्वों	और यौगिकों	की एन्ट्रॉर्प	ो अपेक्षित	है
	(3)	not	determina	ble	(4)	not kno	wn	
	(1)	max	kimum		(2)	zero		
54	The		opy of all	elements a	and compou	ınds at ab	osolute zero	o is expected
	(4)	ΔН	का मान T	∆S से कम	होता है			
	(3)	ΔG	धनात्मक ह	ोता है				
	(2)	ΔG	ऋणात्मक ह	वेता है				
	(1)	इसमे	i मुक्त ऊज	मिं कमी	होती है			
	एक सही	_	_	र्गनिक अभि	क्रिया के लिए	ए निम्नलिखि	ात में से कै	नि–सा प्रतिबन्ध
	(4)	ΔΗ	is less th	an T∆S				
	(3)	ΔG	is positiv	e				
	(2)		is negativ	-			23	
				nied by a	decrease i	in free en	ergy	
53	For is in	_		Chemical	reaction w	hich of t	he followin	ng conditions
	(4)	उदा	सीनीकरण उ	ज्या के				
	(3)	संभ	वन–ऊष्मा वे	,				
	(2)	विल	यन–ऊष्मा व	र्त				
	(1)	दहन	⊢ऊष्मा के					
	किसी	यौगि	ाक की एन्थे	ल्पी या अ	न्तर्निहित ऊष	मा बराबर	होती है उर	सकी
	(4)	Hea	at of neutr	alization			•	
	(3)	Hea	at of form	ation				
	(2)	Hea	at of solut	ion				
	(1)	Hea	at of comb	oustion				

The enthalpy or heat content of a compound is equal to its

55	for the one step decompo	osition reaction $CaCO_3 \xrightarrow{\Delta} CaO + CO_3$ the
	entropy change is	3 · · · · · · · · · · · · · · · · · · ·
	(1) O	(2) positive
	(3) negative	(4) not known
	एक चरण में होने वाली (एक पर्द	ाय) अपघटन अभिक्रिया $CaCO_3 - \stackrel{\Delta}{\longrightarrow} CaO + CO_2$
	के लिए एन्ट्रॉपी परिवर्तन है	<u>.</u>
	(1) O	(2) धनात्मक
	(3) ऋणात्मक	(4) अज्ञात
56	Which of the following is of a reaction?	the only factor in determining the feasibility
	(1) ΔG	(2) ΔH
	(3) ΔS	(4) T
	किसी अभिक्रिया के होने की कौन–सा एक मात्र कारक है	संभावना निर्धारित करने के लिए निम्नलिखित में
	(1) ΔG	(2) ΔΗ
	(3) ΔS	(4) T
57	How many grams of glucos 10% glucose ?	e be dissolved to make one litre solution of
	(1) 10 gm	(2) 180 gm
	(3) 1.84 gm	(4) 18 gm
	10% ग्लुकोस का एक लीटर वि में घोलना चाहिये ?	लयन बनाने के लिए कितने ग्राम ग्लुकोस को पानी
	(1) 10 ग्राम	(2) 180 ग्राम
	(3) 1.84 ग्राम	(4) 18 ग्राम
58	The molarity of a solution cois	ontaining 4 gm NaOH in 250 ml of solution
	(1) 0.05	(2) 1.0
	(3) 2.0	(4) 0.4
	4 ग्राम NaOH के 250 मिली वि	वलयन की मोलरीटी होती है
	(1) 0.05	(2) 1.0
	(3) 2.0	(4) 0,4
05_C		19 (Contd

5_C			20]	Contd					
	(3)	$CH_2 = CH - CH_2 -$	(4)	$CH_3 - C = CH_2$						
	(1)	$CH_2 = CH -$	(2)	$CH_3 - CH = CH_2 -$						
	निम्नलि	खित में से ऐलिल समूह की	संरचना का	। चयन कीजिए						
	(3)	$CH_2 = CH - CH_2 -$	(4)	$CH_3 - C = CH_2$						
	(1)	$CH_2 = CH -$	•	$CH_3 - CH = CH_2 -$						
·		h of the following is ally	_	OT						
2	Whi	h of the fall to the	1 -							
	(3)	Cl ₂	(4)	Br ₂						
	(1)	F_2	(2)	I_2						
		ों के हैलोजेनीकरण में श्रृंखला स		_	होता है ?					
	(3)	Cl ₂	(2) (4)	I ₂ Br ₂						
	(1)	rent halogens is fastest in F ₂		_						
61	The	chain initiating step in t	he haloger	nation reaction of alka	nes with					
	(4)	C-C बंध एक वलय आकार	में हैं							
	` '	एकान्तर C-C बंध ऊर्ध्वाधर	•							
	(2)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
		C-C बन्ध एक सीधी क्षितिज	•	•						
	होती	青?			(4)(1)					
	C_{16} के ऊपर के ठोस एल्केनों का X -किरण विश्लेषण से किसकी उपस्थिति प्रव									
		C-C bonds in a ring	verticai lir	ie						
		C-C bonds in a zig-zag alternate C-C bonds in								
	(1)	C-C bonds in a horizon								
60		ay analysis of solid alkanes		above) indicates the pr	resence o					
	(3)	CH ₂ CICOOH	(4)	CH₃COOH						
		CCI ₃ COOH	(2)	CHCl ₂ COOH						
		ने अम्लीय होगा								
	(3)	CH ₂ ClCOOH	(4)	-						
	(1)	CCl ₃ COOH	(2)	CHCl ₂ COOH						

59

Most acidic acid is

0.3	The number of alkenes possible with the molecular formula C_5H_{10} is	;
	(I) 4 (2) 6	
	(3) 5 (4) 8	
	${ m C}_5{ m H}_{10}$ से संभावित ऐल्कीनों की संख्या कितनी होगी ?	
	(1) 4 (2) 6	
	(3) 5 (4) 8	
64	Carbon tetrachlorido io moderno Carbon tetrachlorido io moderno Carbon de Ca	
•	(1) B	
	(2) reconcionation	
	(3) perspex (4) percelene कार्बन टैट्राक्लोराइड का अग्निशामक के रूप में उपयोग किस नाम से किया जाता है ?	
	(1)	
	(2) 1(46)(174)	
	(3) पसपक्स (4) परक्लीन	
65	The reaction of what half had	
0.5	of early hande with aqueous caustic soda is an example of	
	1	
	(2) Electrophilic substitution (3) Elimination reaction	
	(4) Nucleophilic addition	
	एथिल हैलाइड पर जलीय कास्टिक सोडा की क्रिया किसका उदाहरण है ? (1) नाभिकस्नेही प्रतिस्थापन	
	(2) इलेक्ट्रोनस्नेही प्रतिस्थापन	
	(3) विलोपन अभिक्रिया	
	(4) नाभिकस्नेही योग	
66	Iodoform is mainly used as	
	(1) analgesic (2) anaesthetic	
	(3) antiseptic (4) antipyretic	
	आयोडोफॉर्म का मुख्य उपयोग किस रूप में होता है ?	
	(1) पीड़ाहारी (2) मूर्छनाकारक	
	(3) पूतिरोधी (4) तापनिरोधी	
05 <u>C</u>	[Contd	

_C]	22	[Contd
	(4) P_2O_5	
	(3) Na तथा C ₂ H ₅ OH	
(2	(2) तनु HCl विलयन	
((I) तनु NaOH विलयन	
ख	बनता है ?	पण पाथ गम करन पर ऐसीटिक अम्ल
	मेथिल सायनाइड को निम्नलिखित में से कि बनता है ?	सके साथ को 🛶 🛶 २००
	(4) P_2O_5	
	(2) dilute HCl solution(3) Na and C₂H₅OH	
	(1) dilute NaOH solution(2) dilute HCl solution	
70 .	Acetic acid can be prepared by heat	ing methyl cyanide with
	(5) (1461)	(4) एथाइन
	(3) 1181-3-	(2) मेथेन
	(1) TODE	
	सोडियम ऐसीटेट के वैद्युत-अपघटन से क	(4) ethyne
	(3) otherland	(2) methane
69	Electrolysis of sodium acetate gives (1) ethane	
60		
	(3) कार्बोनिल यौगिक	(4) ऐनहाइड्राइड
	(1) ईथर	(2) ऐल्कोहॉल
	कार्बोक्सिलिक अम्ल को $\mathbf{P_2O_5}$ के साथ	गरम करने पर बनता है
	(3) Carbonyl compounds	(4) Anhydrides
	(1) Ethers	(2) Alcohols
68	Carboxylic acids on heating with	PoOc give
	(3) CH ₃ CHO	(4) $(C_2H_5)_2O$
	(1) एक कीटोन	(2) HCHO
	लाल ताप कॉपर तार को एथेनॉल में	डुबाने पर क्या प्राप्त होता है ?
	(3) CH ₃ CHO	$(4) (C_2H_5)_2O$
	(1) a ketone	(2) HCHO
07	real real not copper wife is pitt	nged in ethanol, we get

5_C	C] 23	[Contd
	(3) एक ट्रान्स-1, 2-डाइऑल (4)	एक एपॉक्साइड
	(1) एक एल्केनॉल (2)	एक सिस-1, 2-डाइऑल
	ऐल्कीन तथा ठण्डे तनु क्षारीय K $\mathrm{MnO_4}$ विल	यन की क्रिया से बनता है
	(3) a trans-1, 2-diol (4)	<u>.</u>
	(1) an alkanol (2)	
74	Alkenes react with cold dilute alkaline	permanganate solution to give
	(4)	साइक्लोऐल्केन
	(2)	
	(1) from 1-2-	
	(4) लिंडलार उत्प्रेरक की उपस्थिति में ऐल्काइनों	
	(2) all-and-	
	(1) size 11	
73	Alkynes add on hydronia in	
	(3) बेन्जोफीनोन . (4) बेन्जॉयल क्लोराइड
) बेन्जऐत्डिहाइड
	यमा वसता ह !	एसाटल क्लाराइड से क्रिया करने पर
	निर्जलीय AICl ₃ की उपस्थिति में बेंजीन की	,
	(2) have 1	
	(1) A anti-ul	
72	Reaction of benzene with acetyl chlorid gives	e in the presence of anhydrons AlCl ₃
	(१) इत्याम यम साउपन स्वण	
	(3) उच्चतर वसीय अम्लों का सोडियम ।(4) एल्केनों का सोडियम लवण	न्वण
	·	
	(2) मिलसरॉल का सोडियम लवण	
	(1) ऐल्कोहॉलों का सोडियम लवण	
	साबुन (Soap) क्या होता है ?	
	(3) sodium salts of higher fatty ac(4) sodium salts of alkanes	aids
	(2) sodium salts of glycerol (3) sodium salts of higher fatty as	
	(1) sodium salts of alcohols	
	(1) sodium colta of al-al-1	

Soaps are

- 75 Alkynes react with ozone to form ozonides, which on hydrolysis with acids give
 - (1) 1, 2-diketones
 - (2) I, 3-diketones
 - (3) carbonyl compounds
 - (4) carboxylic acids

ऐल्काइनें ओजोन से अभिक्रिया करके ओजोनाइड बनाती है । इनके अम्लीय जल अपघटन से बनता है--

- (1) 1, 2-डाइकीटोन
- (2) 1, 3-डाइकीटोन
- (3) कार्बोनिल यौगिक
- (4) कार्बोक्सिलक अम्ल
- 76 Benzene reacts with CHCl₃ in the presence of anhydrous AlCl₃ to give
 - (1) Diphenyl
 - (2) Diphenylmethane
 - (3) Triphenylmethane
 - (4) Triphenylchloromethane

बेन्जीन पर अनार्द AlCl3 की उपस्थिति में CHCl3 की क्रिया से क्या बनता है ?

- (1) डाइफेनिल
- (2) डाइफेनिलमेथेन
- (3) ट्राइफेनिलमेथेन
- (4) ट्राइफेनिलक्लोरोमेथेन
- 77 Which of the following sets of groups is mainly m-directing ?
 - (1) -COOH, -SO₂OH, -CHO
 - (2) -OH, -OR, -NH₂
 - (3) -OH, -CH₃, -NHCOCl₃
 - (4) $-SO_2OH$, -OH, $-NH_2$

निम्निलिखित में से समूहों का कौन-सा समुच्चय मुख्यतः m-निर्देशी है ?

- (1) -COOH, -SO₂OH, -CHO
- (2) -OH, -OR, -NH₂
- (3) -OH, -CH₃, -NHCOCl₃
- (4) $-SO_2OH$, -OH, $-NH_2$

78		ch of the following aromatic rophilic substitution ?	compo	ounds is more reactive towards
	(1)	Benzene	(2)	Toluene ·
	(3)	Benzaldehyde	(4)	Benzonitrile
	निम्नर्गि होता	•	इलेक्ट्र	ॉनस्नेही प्रतिस्थापन में सर्वाधिक सक्रिय
	(1)	बेन्जीन	(2)	टॉलुईन
	(3)	बैन्जे-ल्डिहाइड	(4)	बैन्जोनाइट्राइल
79	Whic	ch of the following is not a p	oolynu	clear hydrocarbon ?
	(1)	Anthracene	(2)	Naphthalene
	(3)	Mesilylene	(4)	Phenanthrene
	निम्नरि	लेखित में से कौन-सा बहुन्यूक्लीय	हाइड्रोव	कार्बन नहीं है ?
	(1)	एन्थ्रासीन	(2)	नैफ्थैलीन
	(3)	मेसिटिलीन	(4)	फिनैन्थ्रीन
80	The as	reaction C ₆ H ₆ vapour + Air	+ H0	$Cl \xrightarrow{CuCl_2} C_6H_5Cl$ is known
	(1)	Richter reaction		
	(2)	Raschig process		
	(3)	Reformatsky reaction		
	(4)	Reimer-Tiemann reaction		
	निम्नी	लेखित अभिक्रिया किस नाम से वि	दित है	? C_6H_6 वाष्प + वायु + HCI
	गैस	$\xrightarrow{\text{CuCl}_2}$ $C_6 \text{H}_5 \text{Cl}$		• • •
	(1)	रिशटर अभिक्रिया (Richter read	tion)	
	(2)	राशिग प्रक्रम (Raschig process)	· · · · · · · · · · · · · · · · · · ·
	(3)	रिफॉर्मेट्स्की अभिक्रिया (Reforma	ıtsky 1	reaction)
	(4)	रीमर-टीमान अभिक्रिया (Reimer	-Tiem	ann reaction)
05_0	C]	25	;	[Contd

81 The products A and B in the reaction sequence

$$C_6H_6 \xrightarrow{\text{conc. HNO}_3} A \xrightarrow{S_n + \atop \text{HCl}} B$$

- (1) Nitrobenzene, aniline
- (2) Nitrobenzene, phenylhydroxylamine
- (3) Benzene sulphonic acid, benzene
- (4) Nitrobenzene, azobenzene

निम्नलिखित अभिक्रिया अनुक्रम में A तथा B क्या है ?

$$C_6H_6 \xrightarrow{\text{सा-$} \text{$\not = $}} H_2SO_4 \xrightarrow{S_n +} HCl \xrightarrow{B}$$

- (1) नाइट्रो बैन्जीन, ऐनिलीन
- (2) नाइट्रो बैन्जीन, फेनिलहाइड्रोक्सीलऐमीन
- (3) बैन्जीन सल्फोनिअम्ल, बैन्जीन
- (4) नाइट्रो बैन्जीन, ऐजोबैन्जीन

82 The widely used pain reliever "aspirin" is prepared by

- (1) treating phenol with acetic anhydride
- (2) reacting salicylic acid with methanol
- (3) reacting salicylic acid with acetic anhydride
- (4) reacting phenol with sulphuric acid

बहु प्रचलित दर्द निवारक दवा "ऐस्पिरिन" बनाते हैं

- (1) फीनॉल की ऐसीटिक ऐनहाइड्राइड से क्रिया द्वारा
- (2) सैलिसिलिक अम्ल पर मेथेनॉल की क्रिया द्वारा
- (3) सैलिसिलिक अम्ल पर ऐसीटिक ऐनहाइड्राड की क्रिया द्वारा
- (4) फीनॉल पर सल्फ्यूरिक अम्ल की क्रिया द्वारा

83 Which of the following medicine is not anti-biotic?

(1) Terramycin

(2) Streptomycin

(3) Morphine

(4) Penicillin

निम्न में से कौन-सी औषधि ऐण्टिबायोटिन नहीं है ?

(1) टेरामाइसीन

(2) स्ट्रेप्टोमाइसीन

(3) मॉर्फीन

(4) पेनिसिलीन

05_C]

26

[Contd...

84 Nitration of benzoic acid gives the product

(2)
$$\bigcirc$$
 NO₂

(4)
$$O$$
 O
 O
 O

बेन्जोइक अम्ल के नाइट्रीकरण से प्राप्त उत्पाद है

85 Enzymes are

(1) Proteins

(2) Minerals

(3) Fatty acids

(4) Oil

एन्जाइमस होते है

(1) प्रोटीनस

(2) खनिज

(3) वसा अम्ल

(4) तेल

86 Example of a diamagnetic compound

(1) NO

(2) NO₂

(3) O₂

(4) Cl₂

प्रतिचुम्बकीय यौगिक का उदाहरण है

(1) NO

(2) NO₂

(3) O₂

(4) Cl₂

05_C]

27

[Contd...

87 Molecule with V-shape go	eometry	
(1) BeCl ₂	(2) HgC	l ₂
(3) SO_2	(4) CO ₂	-
V-आकृति वाला अणु है		
(1) BeCl ₂	(2) HgCl	2
(3) SO ₂	(4) CO ₂	-
88 Which of the following bonding?	compounds exhibits	intramolecular hydroge
(1) PhenoI	(2) o-chlo	rophenol
(3) m-chlorophenol		rophenol
अन्तःअणुक हाइड्रोजन बन्ध दर्शा		,
(1) फीनॉल	(2) o-क्लोर)फीनॉल -
(3) m-क्लोरोफीनॉल	(4) p-क्लोरो	
	(9) P 3000	गांस
89 Hybridization of iodine in I	Clo [—] is	
(I) Sp	(2) Sp ²	er e
(3) Sp3	(4) Sp ³ d	
ICl_2^- में आयोडीन की संकरण	-	
(1) Sp	(2) Sp ²	*
$(3) Sp^3$	(4) Sp ³ d	
	(4) Sp·u	
90 Molecule with maximum dipo	ole moment in	
(1) NH ₃	4	· · · · · · · · · · · · · · · · · · ·
(3) CO ₂	(2) NF ₃ (4) CH ₄	•
- सर्वाधिक द्विधुव आघूर्ण वाला अणु	7	and the second
(1) NH ₃		
(3) CO ₂	(2) NF ₃	
05_C]	(4) CH ₄	
- ·	28	[Contd

91 Which of the following relation is not correct	ct ?	correc	not	is	relation	following	the	of	Which	91
---	------	--------	-----	----	----------	-----------	-----	----	-------	----

(1)
$$\lambda = \frac{h}{mv}$$

(2)
$$\text{mvr} = \frac{\text{nh}}{2\pi}$$

(3)
$$mc^2 = \frac{hc}{\lambda}$$

(4)
$$E = h \frac{\lambda}{c}$$

निम्न में से कौन-सा सम्बन्ध सही नहीं है ?

(1)
$$\lambda = \frac{h}{mv}$$

(2)
$$\text{mvr} = \frac{\text{nh}}{2\pi}$$

(3)
$$mc^2 = \frac{hc}{\lambda}$$

(4)
$$E = h \frac{\lambda}{c}$$

92 Be²⁺ is isoelectronic with?

(1) H^{+}

(2) Li⁺

(3) Na⁺

(4) Mg^{2+}

Be²⁺ निम्न में किससे समइलेक्ट्रॉनिक है ?

(1) H^{+}

(2) Li⁺

(3) Na⁺

(4) Mg^{2+}

93 Wilkinson's catalyst is used for

- (1) Polymerization
- (2) Hydrogenation

(3) Oxidation

(4) Halogenation

विल्किन्सन उत्प्रेरक निम्न के लिये प्रयुक्त होता है

(1) बहुलकीकरण

(2) हाइड्रोजनीकरण

(3) ऑक्सीकरण

(4) हैलोजेनीकरण

94 In the complex, Fe(CO)_x, the value of x is

(1)

(2)

(3) 5

(4) 6

Fe(CO)_x, में x का मान है

(1) 3

(2) 4

(3) 5

(4) 6

95	According to crystal field theor	ry a ligand is
	(1) cation	(2) molecule with orbital
	(3) point charge	(4) arrion
	क्रिस्टल क्षेत्र सिद्धान्त के अनुसार लि	गेन्ड है
	(1) धनायन	(2) कक्षक सहित अणु
	(3) बिन्दू आवेश	(4) ऋणायन
96	6 Which of the following is an o	organometallic compound ?
	(1) $[Cr(C_2O_4)_3]^{3-}$	(2) $[Fe(CN)_6]^{3}$
	(3) $[PtCl_3(C_2H_4)]^{1-}$	(4) $[Ti(OC_2H_5)_4]$
	निम्नलिखित में से कौन-सा कार्बधात्वि	ाक यौगिक है ?
	(1) $[Cr(C_2O_4)_3]^{3-}$	(2) [Fe(CN) ₆] ³
	(3) $[PtCl_3(C_2H_4)]^{1-}$	(4) $[Ti(OC_2H_5)_4]$
97	Which is not a f-block element	?
	(1) Lu	(2) Tc
	(3) Tm	(4) Pm
	निम्न में से कौन—सा f—ब्लोक का तल	व नहीं है ?
	(1) Lu	(2) Tc
	(3) Tm	(4) Pm
98	Which of the following elements	belongs to satisfy
	(1) La	(2) Gd
	(3) Lu	(4) Th
	निम्न में से कौन-सा तत्व एक्टिनाइड	
	(1) La	
	(3) Lu	(2) Gd
	(°) Lu	(4) Th
- O	C)	

99			ons (L_n^{3+}) in with the identity	ons) the hig	ghest v	value of	magneti	c momen	t (μB)
	(1)	Gd ³⁺ ion	ι		(2)	Nd ³⁺ ,	P_m^{3+} io	ns	
	(3)	Dy ³⁺ , P	3+ ions		(4)	L_{u}^{3+}	ion		
	लैन्थेन है	ाइड आयनो	i (L _n ³+ आ	यन) में चुम्ब	कीय अ	ाघूर्ण (_!	1B) का	सर्वाधिक	मान होता
	(1)	Gd ³⁺ आ	यन		(2)	Nd ³⁺ ,	P _m ³⁺ 34	ायनों में	
	(3)	Dy ³⁺ , P	. ³⁺ आयनों m	में	(4)	$L_{\rm u}^{\ 3+}$	आयन		
100		•		e taken by unt, if half				nce to r	emain
	·		·B	,					
	(1)	39			(2) (4)	48 52			٠.
	(3)	26			•				
	एक होंगे	रेडियोधर्मी	पदार्थ की अ	ार्धआयु 13 व	वर्ष है	। उसका	<u>।</u> इवां भा	ग शेष रह	ने में वर्ष
	(1)	39			(2)	48			
	(3)	26			(4)	52			
101	The	rate of	a reaction	in a multis	step re	eaction	is gover	rned by	
	(1)	Fastest							•
	(2)	•	ium step						
	(3)	Slowest		. 0.1		•			
	(4)	_		teps of the			_		
	किर्स	•		का वेग नि	धारण	हाता ह			
	(1)	तीव्रतम	पद द्वारा						
	(2)	साम्य पर	इ द्वारा						
£	(3)	मंदतम प	ाद द्वारा				-		
-	(4)	किसी र्भ	ो एक अभि	क्रिया पद इ	ारा ं				
05_	C]			3	1				[Contd

. .

•	(1) $\Delta H > T\Delta S$	(2)	$\Delta H = T\Delta S$
	(3) $\Delta H < T\Delta S$	(4)	ΔG is positive
	बर्फ और पानी 273 K पर साम्यावर	था में रह	ते हैं, क्योंकि –
	(1) $\Delta H > T\Delta S$	(2)	$\Delta H = T\Delta S$
	(3) $\Delta H < T\Delta S$	(4)	∆G धनात्मक होता है
106	The degree of dissociation of an of the following, except	electrol	
	(1) dilution	(2)	nature of solvent
	(3) temperature	• •	conductance of the solution
	विलयन में किसी वैद्युत अपघट्य की नहीं करती ?	वियोजन	की मात्रा निम्न में से किस पर निर्भर
	(1) तनुता	(2)	विलायक की प्रकृति
	(3) ताप	(4)	विलयन की चालकता
107	The solution of ferric chloride	is	
	(1) slightly acidic	(2)	slightly alkaline
	(3) neutral	(4)	amphoteric
	फेरिक क्लोराइड का जलीय विलयन		
	(1) हल्का अम्लीय होता है	(2)	हल्का क्षारीय होता है
	(3) उदासीन होता है	(4)	उभयधर्मी होता है
108	The simplest alkane which exhibatoms ?		isomerism has how many carbon
	(1) 4	(2)	5
	(3) 6	(4)	3
	श्रृंखला समावयवता प्रदर्शित करने वा है ?	ली सरलतग	म ऐल्केन में कितने कार्बन परमाणु होते
	(1) 4	(2)	5
	(3) 6	(4)	
05_	[C]	33	[Contd

105 Ice and water are at equilibrium at 273 K because

109	Molecule, in which the internuc is longest is	lear dis	stance between two carbon a
((1) C_2H_6	(2)	C_2H_4
((3) C_2H_2	(4)	C_6H_6
f	नेम्नलिखित यौगिकों में अन्तरनाभिकी	य दूरी व	सर्वाधिक किस में होती है ?
((1) C_2H_6	(2)	C_2H_4
(.	C_2H_2	(4)	C ₆ H ₆
110 T	he simplest alkene exhibiting g	eometri	ical isomerism is
(1	I) propene	(2)	1-butene
•	3) 2-butene		isobutylene
स	रलतम ऐल्कीन जिसमें ज्यामितीय सम	वियवता	संभव है, का नाम क्या है ?
(1) प्रोपीन	(2)	1-ब्यूटीन
(3)) 2-ब्यूटीन	(4)	आइसोब्यूटिलीन
(1) (2) (3) (4)	Geometric isomers are easily A conformation of 1-butene A conformation of 2-butene लिखित में से कौन—सा कथन गलत ब्यूटेन के समानुरूपण समावयवियों सकते हैं। ज्यामितीय समावयवियों को घूर्णन सकते हैं। 1-ब्यूटीन का एक समानुरूपण सुगम	utane a intercolis reading is not a library and a library	are easily interconvertible onverted by rotation ily changed to another readily changed to another मिता से अन्तरपरिवर्तित कर पमता से अन्तरपरिवर्तित कर दूसरे में बदल सकते हैं।
5_C]	2-ब्यूटीन का एक समानुरूपण सुगम् 34	तास	
	Ţ.		[Contd.

112 Ethylene	reacts	with	alkaline	$KMnO_4$	to	form
--------------	--------	------	----------	----------	----	------

- (1) CH₂OH CHO
- (2) CH₂OH CH₂OH
- (3) CH₂OH COOH
- (4) $CH_3 CH_2OH$

एथिलीन तथा क्षारीय KMnO4 की क्रिया से बनता है

- (1) CH₂OH CHO
- (2) $CH_2OH CH_2OH$
- (3) $CH_2OH COOH$
- (4) $CH_3 CH_2OH$

113 The name for
$$C \equiv C - C \equiv C$$

$$CH_3 \qquad CH_3$$

(1) 2, 4-hexyne

- (2) Dipropyne
- (3) 1, 4-dimethyldibutyne
- (4) 2, 4-hexadiyne

(1) 2, 4-हैक्साइन

- (2) डाइप्रोपाइन
- (3) 1, 4-डाइमेथिलब्यूटाइन
- (4) 2, 4-हैक्साडाइआइन
- 114 Nitrobenzene on heating with solid KOH gives a mixture of o- and p-nitrophenols. It is an example of
 - (1) an electrophilic addition reaction
 - (2) 2 a nucleophilic aromatic substitution reaction
 - (3) an electrophilic substitution reaction
 - (4) a nucleophilic addition reaction.

नाइट्रोबेन्जीन का ठोस KOH के साथ गरम करके o- तथा p-नाइट्रोफीनॉल का मिश्रण बनना

- (1) इलेक्ट्रानस्नेही योग अभिक्रिया का उदाहरण है
- (2) नाभिकरनेही ऐरोमैटिक प्रतिस्थापन का उदाहरण है
- (3) इलेक्ट्रानस्नेही प्रतिस्थापन का उदाहरण है
- (4) नाभिकस्नेही योग अभिक्रिया का उदाहरण है

[Contd.

The number of aromatic nitro compounds with the molecular formula C ₇ H ₇ NO ₂ are
(1) $\frac{1}{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$C_7H_7NO_2$ अणुसूत्र से कितने ऐरोमैटिक नाइट्रो-यौगिक संभव हैं ?
(1) 3 (2) 4
(3) 5 (4) 10
ALC DI III III III III III III III III III
Phenylhydrazine is prepared by the reduction of benzenediazonium chloride with
(1) sodium and ethanol (2) zinc and acetic acid
(3) stannous chloride and HCl (4) alkaline alugana
बन्जानडाइजानियम क्लीराइड का किससे अपचयन करने घर फेनिलडाउँहिन्स करने है
(1) साउपन तथा एथनील (2) जिल्हा तथा प्राप्तिक कर्
(3) स्टैनस क्लोराइड तथा HCl (4) क्षारीय ग्लूकोस
117 Nitration of acetanilide gives mainly (1) p-nitroaniline (2) o-nitroaniline (3) p-nitroacetanilide (4) o-nitroacetanilide ऐशीटऐनिलाइड के नाइट्रोकरण पर मुख्यतः क्या बनता है ? (1) p-नाइट्रोऐनिलीन (2) o-नाइट्रोऐनिलीन (3) p-नाइट्रोऐसीटऐनिलाइड (4) o-नाइट्रोऐसीटऐनिलाइड
$C_6H_5NH_2 \xrightarrow{NaNO_2} A \xrightarrow{H_3O^+} B+N_2$
 benzenediazonium chloride, benzene benzyl chloride, benzene benzyl chloride, benzyl alcohol benzenediazonium chloride, phenol
$C_6H_5NH_2 \xrightarrow{NaNO_2} A \xrightarrow{H_3O^+} B+N_2$
इस अभिक्रिया में A तथा B क्रमशः क्या हैं ?
(1) बेन्जीनडायाजोनियम क्लोराइड, बेन्जीन
(2) बेन्जिल क्लोराइड, बेन्जीन
(3) बेन्जिल क्लोराइड, बेन्जिल ऐल्कोहॉल
(4) बेन्जीनडायाजोनियम क्लोराइड, फीनॉल
5_C] 36

119	Cannizaro reaction is given by						
	(1)	aldehydes containing α-hydrogens					
	(2)	aldehydes not containing $\alpha-1$	nydrog	gens			
	(3)	a ketone having α -hydrogen	atom	ns .			
	(4)	ketones not having α-hydrog	gens				
	कैनिए	क्रेनिजारो अभिक्रिया देने वाले यौगिक क्या होते हैं ?					
	(1) α – हाइड्रोजन युक्त ऐल्डिहाइड						
	(2)	(2) वे ऐल्डिहाइड जिनमें α-हाइड्रोजन परमाणु नहीं होते					
	(3) α – हाइड्रोजन युक्त कीटोन						
	(4)	lpha – हाइड्रोजन रहित कीटोन					
120	A 1.1.	ol condensation is the reaction	of				
120		-	O1				
	(1) acetaldehyde and KOH						
	(2) formaldehyde and 10% NaOH (3) formaldehyde and HCN						
	(4) acetone and chloroform						
	` ′	ॉल संघनन अभिक्रिया तब होती है ज	जब				
	(1)	एसीटैल्डिहाइड तथा KOH विलयन		करते है			
	` ,	-					
	(2)	फॉर्मिल्डिहाइड तथा 10% NaOH हि		<i>9 ח</i>) מ			
	(3)	फॉर्मिल्डिहाइड तथा HCN क्रिया क					
	(4)	ऐसीटोन तथा CHCl3 क्रिया करते	₹				
121	Which of the following carbonyl compounds exhibits keto-enol isomerism to an appreciable extent?			nds exhibits keto-enol isomerism			
•	(1)	acetone	(2)	acetylacetone			
	(3)	·	` '	acetic ester			
	निम्निलिखित कार्बोनिल यौगिकों में सुपेक्ष्य सीमा (appreciable extent) तक कीटो-ईनाल समावयवता कौन दर्शाता है ?						
	(1)	ऐसीटोन	(2)	ऐसीटिएसीटोन			
	(3)	ऐसीटऐल्डिहाइड	(4)	ऐसीटिक एस्टर			
05_	C]	37		[Contd			

- 122 Acetone and acetaldehyde are readily distinguished by their reaction with
 - (1) Iodine and alkali
 - (2) 2, 4-dinitrophenylhydrazine
 - (3) Tollen's reagent
 - (4) Chlorine and alkali

ऐसीटोन तथा ऐसीटऐल्डिहाइड में सुगमता से विभेद करने हेतु क्रिया कराते हैं

- (1) आयोडीन तथा क्षार के साथ
- (2) 2, 4-डाइबाइट्रोफेनिल हाइड्रेजीन के साथ
- (3) टॉलन अभिकर्मक के साथ
- (4) क्लोरीन तथा क्षार के साथ
- 123 The process of converting an optically active compound into the optically inactive compound is known as
 - (1) resolution
 - (2) inversion
 - (3) recemisation
 - (4) asymmetric synthesis

ध्रुवण घूर्णक यौगिक को अघूर्णक यौगिक में परिवर्तित करने के प्रक्रम को कहते है

- (1) वियोजन
- (2) प्रतिलोमन
- (3) रेसिमीकरण
- (4) असमित संश्लेषण
- 124 Sugar is present in the fruits in the from of
 - (1) starch
 - (2) fructose
 - (3) cellulose
 - (4) glucose

फलों में उपस्थित शर्करा का रूप है

- (1) स्टार्च
- (2) फ्रक्टोस
- (3) सेल्यूलोस
- (4) ग्लूकांस

125 Which one of the following is most stable?

(1)
$$CH_3 - \overset{\oplus}{C}H_2$$

(3)
$$CH_3 - CH_2 - CH_2 - CH_2$$

$$(4) \quad \text{CH}_{3} \overset{\oplus}{\overset{-\text{C}}{\overset{-\text{C}}{\overset{-\text{CH}}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}$$

निम्नलिखित में से कौन एक सर्वाधिक स्थाई है ?

(1)
$$CH_3 - \overset{\oplus}{C}H_2$$

(2)
$$CH_3 - CH - CH_3$$

(3)
$$CH_3 - CH_2 - CH_2 - \overset{\oplus}{C}H_2$$

126 If two isomers are mirror image of each other, they are known as

- (1) Enantiomers
- (2) Rotational isomers
- (3) Diastereoisomers
- (4) Geometrical isomers

दो समावयवी जो एक दूसरे के दर्पण प्रतिबिम्ब है, कहलाते हैं

- (1) दर्पण प्रतिबिम्ब (एनन्टियोमर्स)
- (2) घूर्णन समावयवी
- (3) अप्रतिबिंबी (डाइस्टीरियो) समावयवी
- (4) ज्यामितीय समावयवी

127 The correct name of the following is

- (1) [2R, 3S] Tartaric acid
- (2) [2R, 3R] Tartaric acid
- (3) [2S, 3S] Tartaric acid
- (4) [3R, 2S] Tartaric acid

निम्न यौगिक का सही नाम है

- (1) [2R, 3S] टार्टरिक अम्ल
- (2) [2R, 3R] टार्टरिक अम्ल
- (3) [2S, 3S] टार्टरिक अम्ल
- (4) [3R, 2S] टार्टरिक अम्ल

128 The cell employed for ultra-violet region is made of

(1) Glass

(2) Quartz

(3) NaCl

(4) AgCl

पैराबैंगनी क्षेत्र में प्रयुक्त सैल बना होता है

(1) काँच का

- (2) क्वार्ट्ज का
- (3) सोडियम क्लोराइड का
- (4) सिल्वर क्लोराइड का

129 In the first order reaction, concentration of the product with time

(1) increases

- (2) decreases
- (3) first increases than decreases (4) remains constant प्रथम कोटि अभिक्रिया में उत्पाद की सान्द्रता समय के साथ
- (1) बढ़ेगी

- (2) घटेगी
- (3) पहले बढ़ेगी फिर घटेगी
- (4) स्थिर रहेगी

05_C]

40

[Contd...

130	Rate of chemical reaction increases with the increase of 10°C in temperature because		
	(1) number of collision between molecules increases		
	(2) velocity of activated molecules increases		
	(3) activation energy increases		
	(4) ratio of activated molecules increases		
	ताष में 10°C की वृद्धि करने पर रसायनिक अभिक्रिया का वेग बढ़ता है क्योंकि		
	(1) अणुओं के मध्य टक्कर की संख्या बढ़ जाती है		
	(2) सक्रियत अणुओं की गति बढ़ जाती है		
	(3) सक्रियण ऊर्जा बढ़ जाती है		
	(4) सिक्रयत अणुओं का अनुपात बढ़ जाता है		
131	The active species in Tollen's reagent is		
	(1) Cu ⁺		
	(2) $[Cu(NH_3)_2]^+$		
	(3) Ag ⁺		
	(4) $[Ag(NH_3)_2]^+$		
	टॉलन अभिकर्मक में सक्रिय स्पीशीज होती है		
	(1) Cu ⁺		
	(2) $[Cu(NH_3)_2]^+$		
	(3) Ag ⁺		
	(4) $[Ag(NH_3)_2]^+$		
132	The number of optical isomers in lactic acid		
	(1) 3 (2) 2		
	(3) 5 (4) 4		
	लैक्टिक अम्ल में प्रकाशिक समावयवों की कुल संख्या है		
	(1) 3 (2) 2		
	(3) 5 (4) 4		
05_0	C] 41 [Contd		

133 The correct name for

$$CI \sim CH_3$$

$$CH \cdot CH_3$$

$$CH_2 \cdot CH_3$$

$$CH_2 \cdot CH_3$$

- (1) [Z]-1, 2-dichloro-3-ethyl-4-methyl-2-pentene
- (2) [E]-1, 2-dichloro-3-ethyl-4-methyl-2-pentene
- (3) [Z]-3-isopropyl-2-pentene
- (4) [Z]-1, 1-dichloro-3-ethyl-4-methyl-2-pentene निम्न का सही नाम है

$$CI \sim C = C \sim CH_3$$

$$CICH_2 \sim C = C \sim CH_3$$

$$CH \cdot CH_3$$

$$CH_2 \cdot CH_3$$

- (1) [Z]-1, 2-डाईक्लोरो-3-एथिल-4-मेथिल-2-पेन्टीन
- (2) [E]-1, 2-डाईक्लोरो-3-एथिल-4-मेथिल-2-पेन्टीन
- (3) [Z]-3-आइसोप्रोपिल-2-पेन्टीन
- (4) [Z]-1, 1-डाईक्लोरो-3-एथिल-4-मेथिल-2-पेन्टीन
- 134 In carbonyl compounds Ni(CO)₄, Fe(CO)₅ and Cr(CO)₆ the hybridisation state of central metal atom is respectively
 - (1) d^2sp^3 , dsp^3 , dsp^2
- (2) sp^3, dsp^3, d^2sp^3
- (3) sp^3 , sp^3d , sp^3d^2
- (4) dsp^2 , dsp^3 , d^2sp^3

कार्बोनिल यौगिकों Ni(CO)₄, Fe(CO)₅ तथा Cr(CO)₆ में केन्द्रीय धातु परमाणु की संकरण अवस्था क्रमशः है

- (1) d^2sp^3 , dsp^3 , dsp^2
- (2) sp^3, dsp^3, d^2sp^3
- (3) sp^3 , sp^3d , sp^3d^2
- (4) dsp^2 , dsp^3 , d^2sp^3
- 135 How many ions are produced from [CO(NH₃)₅Cl]Cl₂
 - (1) 2

(2) 3

(3) 4

(4) 5

 $[CO(NH_3)_5CI]Cl_2$ से कितने आयन बनेंगे ?

(1) 2

(2) 3

(3) 4

(4) 5

136	Which is not an inorganic polyme	r ?	
	(1) Mica	(2)	Silicone
	(3) Ceramics	(4)	Buna-S
	निम्न में से कौन-सा अकार्बनिक बहुलक	नहीं	है ?
	(1) माइका	(2)	सिलीकान
	(3) सिरैमिक्स	(4)	बूना−S
137	Organometallic compounds used in	pres	ervation of wood are of
	(1) Al	(2)	Li
	(3) Sn	• •	Hg
	लकड़ी के परिरक्षण हेतु निम्न धातु के	कार्बध	ात्विक यौगिक प्रयुक्त होते हैं
	(1) Al	(2)	Li
	(3) Sn	(4)	Hg
	•		
138	Element 107 has been made by t	he fo	llowing reaction:
	$^{209}_{83} B_i + ^{54}_{24} M \rightarrow ^{261}_{107} U_{ns} + 2^1_0 n w$	here	M is
	(1) Cr	(2)	Fe
	(3) Co	(4)	Ni
	तत्व 107 को निम्न अभिक्रिया द्वारा ब	नाया	गया है
	$^{209}_{83} B_1 + ^{54}_{24} M \rightarrow ^{261}_{107} U_{ns} + 2^1_0 n$	हाँ प	ए M है
	(I) Cr	(2)	Fe
	(3) Co	(4)	Ni
139	The bond order of the N-O bond	ds in	NO_2^- is
	(1) 2	(2)	1
	(3) 1.5	(4)	2.5
	NO2 में N-O बन्धों का बन्धक्रम (b	ond o	order) है ।
	(1) 2	(2)	1
	(3) 1.5	(4)	2.5
05_	<u>C</u>] 4	3	[Contd

140 The solution becomes blue by because	adding copper to a solution of AgNO ₃
(1) Ag ⁺ ions are oxidised	
(2) Ag ⁺ ions are reduced	
(3) Copper is reduced	
(4) Cu ²⁺ ions are oxidised	
	ो पर विलयन नीला हो जाता है क्योंकि
(1) Ag ⁺ आयन का आक्सीकरण	र १८ (५७) पाला हा जाता ह क्याकि होता है
(2) Ag^+ आयन का अपचयन होत	
(3) Cu का अपचयन होता है	
(4) Cu^{2+} का आक्सीकरण होता है	
and the state of the state of	
141 Which of the following laws of the of absolute entropy of a substant	ermodynamics is used for the calculation ce?
(1) Zeroth law	(2) First law
(3) Second law	(4) Third law
उष्पागतिकी के निम्नितिखित नियमों में गणना करने में प्रयुक्त होता है?	कौन-सा किसी पदार्थ की निरपेक्ष एन्ट्रॉपी की
(1) शून्य नियम	(2) प्रथम नियम
(3) द्वितीय नियम	(4) तृतीय नियम
142 The units of entropy are	
(1) Cal-degree	(2) Cal mol ⁻¹ K ⁻¹
(3) KJ/mol	(4) KCal/mol
एन्ट्रॉपी के मात्रक हैं–	() Itous moi
(1) कैलोरी-डिग्री	(2) कैलोरी मोल ⁻¹ K ⁻¹
(3) KJ/मोल	
	(4) किलो कैलोरी/मोल
143 Which is responsible for damaging	blood ?
(1) Ca	(2) Mg
(3) As	(4) Pb
खून को नुकसान पहुँचाता है	
(I) Ca	(2) Mg
(3) As	(4) Pb
05_C] 44	
_ - 4 4	[Contd

144	Among the following, greenhouse gas is			
	(1)	Methane	(2)	Hydrogen sulphide
	(3)	Sulphur di-oxide	(4)	Nitrogen
	निम्नि	त्तेखित में से ग्रीनहाउस गैस है		
	(1)	मीथेन	(2)	हाइड्रोजन सल्फाइड
	(3)	सल्फर डाइऑक्साइड	(4)	नाइट्रोजन
145		ch of the following gas is <u>no</u> etion?	<u>t</u> resp	consible for stratospheric ozone
	(1)	CFC-115	(2)	Halon-1211
	` '	Carbon monoxide	` '	Nitric oxide
	निम्न	में से कौन-सी गैस, ओजोन परत	के ध	क्षरण हेतु उत्तरदायी <u>नहीं</u> है ?
	(1)	CFC-115	(2)	हेलोन-1211
	(3)	कार्बन मोनोऑक्साइड	(4)	नाइट्रिक ऑक्साइड
146	The	approximate region of absorpt	tion f	or $n-\pi^*$ transition is
	(1)	200 nm	(2)	
	(3)	175 nm	(4)	150 nm
	n – 2	\mathfrak{c}^* संकरण के अवशोषण का क्षेत्र	होता	है लगभग
	(1)	200 nm	(2)	190 nm
-	(3)	175 nm	(4)	150 nm
147	in tl	ne region		characteristic IR spectrum band
	` '	3650 - 3590 cm ⁻¹		3400 - 3200 cm ⁻¹
	` '	3000 - 2500 cm ⁻¹		3500 - 3200 cm ⁻¹
	हाइड्र देता		ट्रम म	निम्न क्षेत्र में एक विशिष्ट बैंड (पट्टी)
	(1)	3650 - 3590 cm ⁻¹	(2)	$3400 - 3200 \text{ cm}^{-1}$
	(3)	$3000 - 2500 \text{ cm}^{-1}$	(4)	$3500 - 3200 \text{ cm}^{-1}$
05_6	C)	45	5	[Contd

- 148 Benzaldehyde reacts with acetaldehyde in the presence of dilute alkali to give
 - $(1) \quad C_6H_5CH = CH_2$
 - (2) $C_6H_5 CH = CH CH_3$
 - (3) $C_6H_5 CH = CH CHO$
 - (4) $C_6H_5 CH = CH CH_2OH$

बेन्जऐल्डिहाइड तथा ऐसीट-ऐल्डिहाइड की तनु क्षार की उपस्थिति में क्रिया से क्या बनता है ?

- $(1) \quad C_6H_5CH = CH_2$
- (2) $C_6H_5 CH = CH CH_3$
- (3) $C_6H_5 CH = CH CHO$
- $(4) \quad C_6H_5-CH = CH-CH_2OH$
- 149 Which of the following electrophilic substitution reactions is fastest?
 - (1) Nitration of chlorobenzene
 - (2) Nitration of benzene
 - (3) Nitration of toluene
 - (4) Nitration of benzoic acid

निम्निलिखित इलेक्ट्रॉनस्नेही प्रतिस्थापनों में कौन सबसे द्रुत होता है ?

- (1) क्लोरोबेन्जीन का नाइट्रोकरण
- (2) बेन्जीन का नाइट्रोकरण
- (3) टॉलूईन का नाइट्रोकरण
- (4) नाइट्रोबेन्जीन का नाइट्रोकरण

$$150 \begin{array}{c|c} HC & CH_2 & CHO \\ \downarrow & HC & CH_2 \end{array} + \begin{array}{c} HC & CHO \\ \downarrow & CH_2 \end{array} \rightarrow \begin{array}{c} CHO \\ CHO \end{array}$$

above reaction is a

- (1) Polymerisation
- (2) Substitution

(3) Condensation

(4) Cycloaddition

उपर्युक्त अभिक्रिया है

(1) बहुलीकरण

(2) प्रतिस्थापन

(3) संघनन

(4) चक्रीय योगात्मक

